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Let X, %3, vy Xy, oony %, denote the coordinates of a point in the configuration
space of a physical system, To every valuc of the index | there correspend, in general, a
set of values of scveral indices necessary to specify the variable, For example, if the
system is composed of scveral particles, there may be an index indicating the kind of par-
ticle, another specifying a particular particle from nmong several of the same kind; if x, is
a space coordinate another index, which may assume three different values, shall also be

described by the symbol X, , ete.

The values of a scalar physical quantity at the points of the configuration space
will be considered, by definition, to be independent of the reference system, In a particular
system they may be expressible as a certain function of the coordinates f(x || x5, .y X))
If a change of refercnce system is made such that the point with coordinates x|, x5, ., x,,
in the original system has the new coordinates x 7, X3, «voy Xpy in the new system, the def«
inition implies that the identity

f(xyy gy vy %)~ HUX], %5, wery X)) (1-1)
is satisfied at every point of the configuration space,

One may also think of the transformation as rotating the points of the configuration
space or the physical system, leaving the reference frame unchanged. In either case, the
definition (1-1) expresses the fact that the value of the physical quantity at a physical

point is assumed invariant.

In general, the explicit form of the new function £ in terms of the variables x|,
X3, veey X, will be different from that of the original function f in terms of x, Xy, ey X
If it is the same, the function is said to be symmetric under the transformation in question,
The study of the transformation propertics of the cigenfunctions of physical systems is a

subject of considerable interest.

The coordinate transformations to be considered arc rotations of the coordinate axes,
inversion at the origin, and permutations of the indices of identical particles, The coordinates

of a point in the original system and in the new one are related by a unitary transformation

K{= SRy, (12)




I we denote by x a column vector with components x, x,, ..., X, and similarly for x’, we

n?

may write [5q. (1-2) in matrix notation
x’ Rx (13)

The transformed function 2 will he denoted by Rf, and we may write Eq, (1-1) in the

form
f{x) -~ RIRx) SRI(SRx) (1-4)

The explicit form of the transformed function can be determined from the form of

f(x) and the transformation matrix R, by cxpressing x in terms of x*
Ri(x? - f(R"'x) (1-5)

The right-hand side may then be expressed in terms of an orthonormal set of basis functions
in the same variables, x”, The primes may then be omitted so that one arrives at an expression

of the form

RE(X) = 3 £,(x) (F;|RM) (16)

where the cocefficients depend only on the parameters characterising the transformation,

The transformation may be considered as an operator acting on functions to generate
other functions. The definition by means of an equation of the form (1-6) is consistent with

Eq. (1-1) when the right-hand side is in(:’rprew(l as in Eq, (1-5)

It is perhaps worthwhile to illustrate the meaning of Iiq, (1-3) by considering the
case when the function {(x) is one of the coordinates themselves, In order to avoid confusion

we shall write
f(x) - x,(x) - x; (1-7)
Eq. (1-5) is now

Rx;(x) - x;(R"1x%) - >__‘(R'1)“x f (1-8)
)

If we now omit the primes, we obtain an expression in the form of Eq (1-6)

Rx,(x0) = SR x; (1-9)
)

This is not merely the inverse relation of Eq, (1-2) relabelled, since the definition (1+1) is I

implicic in the form of writing the left-hand side, We shall see the difference more clearly
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when we consider the definitions, not equivalent to Eq. (1-1), adopted by other authors. One
should also notice that with the present definition we cannot identify x/ with the transformed

function of x;.

The previous definition of the transformed function is adopted by Wigner! and
Edmonds? but it is not the only one followed, and care should be exercized when comparing
or making usc of results and expressions in the literaturc, Some authors® define the trans-
formed function as the original function of the new coordinates

f(x) - Rf(x) - f(Rx) (1-10)
and therefore
SRf(x) - f(SRx) (1-11)
For the inverse transformation
R-1f(x) - f(R"1x) (1-12)

This expression should be compared with Eq. (1-5), It may be seen that for a given function
fand a given transformation matrix R, the right-hand side in both equations is the same (the
primes may be omitted). However, while Eq, (1-5) defines the corresponding operator as R,

the operator defined by Eq. (1-12) is the inverse, R,

As before, we may consider the case when the original function is one of the coor-

dinates, According to £q. (1-10), we have now in place of Eq. (1-8)
Rx;(x) - fi{(x) = X (1-13)

so that, according to this definiticn, the t:ansfotm of one of the coordinates is the corre-

sponding coordinate in the new reference system. In place of Eq. (1-9) we now have

Rx;(x) = §Rijxj (1-14)
j

It may be seen that the matrices whose elements are the coefficients appearing on the right-

hand sides of Eqs. (1-9) and (1-14) are inverse to each other,

It is convenient to point out the differences that these two definitions introduce in
the expressions for the transformation of the angular momentum eigenfunctions under rotations.

These are usually written in the form

R(agyljm) = £]in) D" (apy) (1-15)

13




Wigner! and Edmonds 2 adopt the definition corresponding to 1iq. (1-4) while Rose®
and others follow the onc corresponding to Ea. (1-10). Fora given rotation characterized by
threc Lulerian annles deflined and labelled in identical fashion the coefficients D M) (.a.0

3 v 2 m m GOy

in their corresponding expressions are the elements of matrices D(’)(a/iy) which are the in

verse of each other, sa that

(i) (j)
Dmm'(a/{y) Wigner Dm 'm(”ﬂy)* Rose (1.16)

Although their expressions da not appear at first sight to satisfy this relation, this is only
due to the fact that the three Fulerian angles are desipnated by Wipner as y, 3, and a, while

the same angles are designated as a, 3, and y by Rose,

Edmonds? follows the same definitions as Wigner and his expression for the Dm(ln),(aﬂy)

is also the same. However, his designation of the above Fulerian angles is a, B, and y and
this is inconsistent with the definitions adopted, His expressions are valid only if the labels
a and y arc interchanged either in his definition of the Fulerian angles or in the expressions
for the elements I)m(i"z(u/?y) and those derived from it. This may be casily scen if one con-

siders that the operator Rlafdy), defined as the product
Riafy) - R,(a) R (B) R () (1-17)

corresponds, according to Eq. (1+4), to the product of three coordinate transformations

x’ = R (y) x

34 Ry(/%) x’ (1-18)

x” = R, () x*
or’

x* - R, (a) R_y_r(/i) R,()1 x

the first one being a rotation by an angle y about the original z-axis, and the last one a
rotation by a about the intermediate z "axis.
EXAMPLES

We shall illustrate the transformation of the spherical hnrmonichf'" (0,¢ ) under
some of the simplest coordinate transformations. The definition and some ot the most

pettinent properties of the spherical harmonics are given in Appendix A.

1-4




R,(a). Rotation of the coordinate frame about the z-axis by an angle a,

The expressions for the original polar angles of a point P in terms of the new ones

are (sec Fig, 1-1)
9-0"
b= +a

Since

N ('l . . r
eim()’+a) | qima ,ime

it follows that

R () YP (07 7 = YE(G:‘;,'. a) - eima Y}:(G’,.,b’)

We can now omit the primes.

R,(@) YP(6,4) oM@ Y20, ¢)
[}
We shall cven omit the polar angles, for simplicity, and write

R, (a) Yl’\;,‘ s etme Y'E .

R (n). Rotation about the x-axis by an angle n. (See Fig. 1-2)

B=n-6"
¢ =2m—¢’
Since
0 (~cos6%) = (- )4+ © Pleos 67) = (- )1 S (cos 0)
and

eim(21=9") _ o~ imdh”
it follows that

R(m Y2~ (DT Y5m

£

1-5

(1-19)

(1-20)
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Ry(n). Rotation about the y-axis by m (Sce Fig, 1-3)

O 0’

=7
Since

G?(---cos 0°) (- l){,' {")f,’“ ™ (cos 07)
and

cim=gh ") (- D)™ ¢ imi) (1-21)
we finally have

L1 LI ty -
Ry(n)\g (-0t Y‘l'“

INVERSION

lnversion through the origin (IFig, 1-4)

0 -6

G-
Since

O (~cos0%) - (- plim 87 (c05.0°)
and

eim('—my (-~ 1)=m Lime) ‘

we finally obtain

Iymz_l'eym 1-22
) (-1 ) (1-22)
1-7




FIG. 1-3 RY(W)
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2. BASIS FUNCTIONS, OPERATORS.

In what follows we shall use Dirac’s notation whencever convenient (*). Functions

shall be labelled by one or several indices or quantum numbers, and written io the form

g fy) = 1a By (2-1)

Only the minimum necessary number ot indices will be retained. If several func-

tions are considered, the common indices will be omitted,
The Hermitian scalar product of two functions |i) and |j) will be written as
Joi dide = Gl = (DY (2-2)
The matrix elemeats of an operator P will be written as
GIPT = (bfP ¢y - (P il (2-3)
For a Hermitian operator, H = H',
(i) = (it gy = QL gl (2-4)
while for a unitary operator R"1 = R,
GIRID = (R ) = RVl ) (2-5)

Considerasct of basis functions |,), {i), .., l¢h ). We shall assume that they

form a complete orthonormal set, so that
Ghilg) = 83 (2-6)
and an arbitrary function |{f) may be expanded in terms of those of the basic set
1) = 21y (10 (2-7)

Similarly, the action of an operator R on the basis functions may be expressed in

the form

R‘l/li) = ?,‘l/li) ('/’RIRWli) (2-8)

*Due to typographical limitations the usual angular brackets <> will be replaced by parcntheses ( ).

2-1
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I'he coefficients (;|R|y;) are the matrix elements of the operator R in that basis,

~
If we consider the basis functions as the eiements of a row vector W and the trans-
H ~ . .
formed functions R|y;) as the eloments of another row vector R W, we can write the previous

expression in matrix form.
RW - ¥ D(R) (2-9)
It may be noticed that on the right-hand side the matrix D(R) appears as a post-multiplier,
If ewo operators, R and §, are applied in succession, we have
SIRYI = SI¥DR) = [S¥] DR

(2-10)
[SRIW = W[D(S) D(R)|

so that the matrix of the product (SR) is the product of the corresponding matrices, written

in the same order,
If we make a change of basis
Yoo~ WA (2-11)
the elements of A are the transformation coefficients
Ay = Wiy (2:12)
The action of the operator R on the new basis functions is
RU’ = [RVIA = ¥DR)-A = W’ A"LD(R) A (2-13)

and therefore, the matrix of the operator R in the new basis is related to the old one by a

similarity transformation
D'(R) = A" D(R) A (2-14)
If the new basis functions also form an octhonormal set, the transformation is unitary,
o Al = AL (2-15)
and the matrix of R in the new basis is |

D(R) - A'D(R) A (2-16)
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While the matrix clements of an aperator in two different basis are ditferent, (2-16),
we may ask wherher there ic an operator having the same watrix clements in the new hasis
S

as the old operator had in the old basts, that i
WriPlgy) = (AgIP Ay (2-17)

If we multiply the operator P on the left by AT (A™)T and on the right by A"1A we

shall have
WilPlpy) - (g ANATDY TP A E Al
(2-18)
= (Aul(ADTP AHA g
Therefore, we obtain identical results with the operators

P in the basis |))
and
(AH P AL in the basis A

and both descriptions are equivalent, For a unitary transformation

(AHtPATL = APAT (2-19)
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3. GROUP-THEORETICAL CONSIDERATIONS

Let [¢r)), [43), «ovty |¥r,) be an orthonormal set of functions which under the oper-

ations of a symmetry group transform into linear combinations of themselves

RIv,) = 5 1) (0 RI%)) (3-1)
or, in matrix notation,
R W = ¥ D(R) (3-2)

The group of matrices D(R) constitute a representation of the group, and the sct of

~y
functions ¥ is said to form a basis for the represcntation.

If we introduce a change of basis by means of a lineat transformation (non-singular)

WA (3-3)
the new basis functions transform as
RY* = WD*(R) (3-4)

The matrices of both representations are related by the similarity transformation
D(R) - AT D(R) A (3-5)
and the two matrix representations are said to be equivalent,

For a given matrix represcntation, D(R), the basis function |#,) is said to belong
to the i-th row of the representation, since its cocfficients in the transformation cxpression
(3-1) are the clements of the i-th row of the matrices D(R). The other functions are called
its partners. Notice that this definition is made in reference to a particular matrix presen-
tation. If an equivalent matrix representation is chosen, such as that afforded by the
matrices D{R), the function that belongs to the i-th row will be |l/li’).

One may also consider the operations of the group as acting on the physical opera-
tors involved in the problem, vather than on the basis functions. Aa equivalent description

is obtained if the transform of an operator P under a (unitary) operation of the group is_

P’= RPR"! (36)




As in the case of the basis functions, the operators may also be classified accord-

ing to their transformation properties.

Fora piven matrix representation D(R), if a sct of operators P, P, ....Pytrans-

form under the proup operations in the form (compare with Eq, (3-1),
RP;R™ =%, P(yR|y;) (3-7)

they are said to belong to that representation, and in particular P, is said to belong to the

i-th row.

Of special intcrest are the symmetric operators. According to the preceding defini-

tion, an operator A is said to be symmetric if for every group operation
RAR! = A (3-8)
or
RA = AR (3+9)
that is, a symmetric operator commutes with all the operations of the group.

All the preceding considerations apply equally to both reducible and irreducible
representations, For irreducible tepresentations some important theorems apply, and we

shall refer to them briefly.

In what follows, functions that belong to irreducible representations will be
labelled by two indices, the first corresponding to the irreducible representation, the second
to the particular row to which they belong. Other additional labels will be necessary in
general, since there may be several sets of functions with the same transformation proper-
ties, but we shall omit them unless they are required. For an irreducible representation y,

the basis functions transform as

R{yi) = ZylyA) (yAIR|ype) (3-10)
The orthogonality relations of irreducible representations may be written in the form
2 g Ol ARV ) = 3 83,7 "8 ) 5O ) (3-11)
where h is the order of the group and d the dimension of the irrcducible representation,

In what follows we shall assume that the matrix representations are unitary. In
this case

D-'(R) = DY(R)

-12
(IR yr) = AR |yp)* (3-12)




and the orthogonality relations take the form
y ”n » e’ h ’ ’ ’
TR ORIy ARl B7) = 5 80,y ") 8ty ") BAA) (3-13)

A very important theorem applying to the class of symmetric operators may be stated

as follows:

‘The matrix elements of symmetric operators between functions that belong to diffet-
ent irreducible representations ot to different rows of the same irreducible representation

are zZeto.

The proof may be given briefly. Consider the sets of functions |ayp) and |a%y 1”),
the indices a and a’ being necessary since we may have y = y“and pp = 11", Under the opera-

tions of the group they transform as

Rlaym) = £, layA) AR yp) (3-14)
Also
AR|ay ) = 2‘:\"11 Ala’y\") (y"‘\’IRIy'yt') (3-15)
If we take the Hermitian product of (3-14) and (3-15) and consider that
RYAR = RTRA = A (3-16)
we obtain
(ayu{Ala’y 1) =
ZAZA GAIRIy* (AR |y 1) (ayAAla’y A%) (3-17)
By adding over all the operations of the group and introducing the orthogonality
relations
h(ayulAla’y”) = £, 5y - (ay)‘lA]a’y'A')% 5y y”) 8luy u*) B(A, A7) (3-18)
(ayplAlay ") = 80y,y ") 8,0 ") Eyey g(aytha'y?\) (3-19)

In addition, the righe hand side is independent of 4, so that it is the same for all partners.

In particular, since the unit operator is symmetric, functions that belong to different
irreducible representations, or to different rows of the same irreducible representations,

are orthogonal.
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If we have an orthonormalsetof basis functions for each of the irreducible represen-

tations of a group, the matrices of the operators R of the group, in the representation

afforded by all those basis functions, of dimension h” (= 3 dy)are of the form

r—D“)(R) 0 0 0 ]

0 D(2)(R) 0 0

0 0 ’ DYI(R) 0 “-n
o 0 0 . DR |

We can express those matrices in terms of very simple ones if we consider that any
matrix of order d may be expressed as a linear combination of d? matrices of the same order,

each of which contains only one non-vanishing element in a particular row and column. For

example, any second order matrix may be expressed in terms of the four mattices

RN

1

0 0
0 , and 1 o (4-2)

These may be considered as the matrices of four operators Py, B, , B, , and B,

in the space of two basis functions |1) and |2). The transformation equation (2-9) takes now

the forms

or

Similarly,

or

In general,

1
(P11, Pyyi2)] = 1), {2)) [0

Pril) =11, P412) = 0

0
(P, Pyol] - O, 12)] [
0

P12ll) =0, Py,l2) = 1)

PaslB? = 12) (6,87

4-1

]
]

(4-3)

(4-4)

(4-5)

(4-6)
(4-7)




The operatois P, are’ 'projection’’ operatots, and the operators of the type Pug
are called “‘ladder’’ operators or 'step’’ operators,

In our case, the matrices (4-1) of the operators R have at most _h(:E},df,) non-
vanishing matrix elements, and may be expressed in terms of h matrices of the type men-

tioned. The corresponding opetators will be designated by P)fz)

The fact that the only non-vanishing matrix element of P(y) is the one in the A-th

row and the p-th column of the y representation may be expressed by

(AP %) = 8py ") SAA) 8y (4-8)

They operate on the basis functions

B 1) =) 8(rsy”) 8Gup®) (4-9)
to give the same function, or a partner, or zero, They operate in the same form on each other
P R0 - B 8(r,y7) Bian®) (4-10)
They are real
((’” - YY) (4-11)

They are not Hermitian, hut
((r) = By (4-12)

The relations between the &(Z) operators and the operators R of the group are easily
established. From the previous considerations it is almost evident that

. (y)
R=13% P AR 4-1
TR W (YA IR [yw) (4-13)

The inverse relation giving the operators P;y) in terms of the R’s is obtained by
multiplying both sides of Eq. (4-13) by (¥ A“|R|y")* and adding over all the group opera-
tions, taking into account the orthogonality relations

. ’ s h ‘
SR ORIy R =, 0 B S 2RIy B GAIRI) = T B,

n
or
PR - 4 5 p oARIuR (4-14)

It may be pointed out that the expression (4-14) of these operators depends on the

partticular matrix representation considered., This is only a reflection of the fact that the

4-2
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projection operators arc defined in reference to a particular choice of axis, or basis func-

tions. One may also definc a similar set of aperarars PO bearing the same rela

characters as the P,(\);L) bear to the elements of the irreducible representations.

P . xy pY) - %}.‘,R 7 (R* R (4-15)

The expression (4-15) for these is independent of the particular form of the irre-

ducible representations.
The sum of all the projection operators
E= Xy ) B (4-16)

has the unit matrix of order i “as representative, and may therefore be considered as the

unit operator.

Any arbitrary function on which the operators R may act, can be expanded as a

sum of functions that belong to the different rows of the different irreducible representations.

16 =%, A BYID =2,

fyA) (4-17)

The individual projection operatots P(,\y)‘) sclect from the function |f) that pare |fy))

which transforms according to a particular row A of a certain irreducible representation y,

PYY 1) = [fyA) (4-18)

The other operators P(,\y))\, associated with the different rows of the same column,

applied to |f) gencrate the partners of [fyd)
P D = [fA”) _ (4-19)

That |[fyA*) is the A’-th partner of |fyA) follows easily from the fact that the operator
P(,Q/)A applied to the latter gives the former.

If the transformation of the function |f) under the group operations R is known, the

symmetry functions |[fy}) can be obtained explicitly by means of Eq. 4-14)

|wm=§zR@MRWu*Rm (4-20)

1
[6A°) = & 5. A [RIyA* RID (4-21)

These are the basic equations used to obtain symmetry functions by use of projec~

tion operators.
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As a final remark we shall mention the fact that the operators associated with the
different rows of any given column of an irreducible representation transform, on pre-
multiplication by an operation of the group, into linear combinations of themsclves and in

exactly the sawine form as the basis functions.

By relabeling Liq. (4-13) and multiplying both sides by P,(:y)\) , we obtain

RPR =0 ) P G [y ) (4-22)
and since
P%’(’) ",(L})/\) = P By ) SGup) (4-23)
it follows that
R I",f}\’ = S HY o[y (4-24)

This may be comparcd with the transformation of the basis functions, 13q.(3-10)

Riyp) = 257 [yA) (A Rlyp) (4-25)

Symmetric operators commute with all the P/{’)l'). This follows from the definition
of symmetric operators (LEqs. 3-8, 9) and the fact that the Pil}l’) are lincar combinations of

the operations of the group (liq. 4-14). If A is symmetric,

A P,{&’)A (4-26)

SYMMETRY FUNCTIONS

A more genecral problem than the expansion of a function in terms of symmetry
functions, in the form of Eq. (4-17), is the following: Given a set of functions |f}), |f,),. ..,
If,) whose transformations under the operations of a group arc known, it is desired to find
the linear combinations of them which belong to the different rows of the irreducible repre-
sentations of the group. This problem presents itsell whenever the Hamiltonian or other
physical operators of interest are invariant or have some definitec symmetry properties. It
is desirable to make a linear transformation from the original basis to a hasis composed

of symmetry fuactions.

We shall always assume that the given set of functions form an orthonormal basis

for a representation of the group. This implies that the transformed functions R|f;) can

always be expressed as a lincar combination of functions which are all part of the initial
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set, Otherwise, the basis should be eompleted by including the necessary number of inde-
pendent functions generated by the action of the group operations on the jf,) which are

ortHogonal to them (and among themselves).

If the characters of the representation (generally reducible) afforded by the functions
|f;) are designated by x(R), the number of independent sets of partner functions belonging
to the representation y, is given by the familiar expression

n, - é %xm(m‘ - x(R) (4-27)
Accordingly, if an operator P)(\l{) is applied to all the functions of the set |[)), the number
of non-vanishing symmetry functions |f,y A) generated is greater than or equal to ny. The
tequired number n, of symmetry functions may be chosen quite arbitrarily, provided they
are independent, and the selected functions may be orthogonalized by any of the usual
methods. Actually, in virtue of some convenient properties of these operators, it is advan-
tageous to carry out the selection and the orthogonalization concurrently, thus insuring
also the lincar independence of the selected symmetry functions. In order to illustrate the
method, let us first consider the conditions for the orthogonality between functions generated
by a given operator, P)\(;Y)

The Hermitian product of the functions P(V)|f) and P(V)|g ) is, according to Fgs.
(4-12) and (4-10)

(f|P<3() P Y)lg) . (f|p< Ne) (4-28)

and therefore, orthogonality between |f) and |g) does not entail the orthogonatity of the
“projected’’ functions. These are orthogonal only if |f) is orthogonal to P(}’)|g), and conse-

quently |g) to P(Y)|f) In reference to any two functions of the initial set, since
PPIEY) = 2IE) (IR (4-29)
I
the orthogonality between Pﬁmf ) and Pﬂ")lf ) implies that P(Y) |f;) does not ‘‘contain’’
lfi)’ and conversely, that P()’)lf ) does not contain |f;). It mwy be noticed that the result

is independent of A, so that all the pairs of corresponding partner functions generated from
|f;) and |f;) have the same Hermitian scalar product. (Cf. Eq. 3-19)

The orthogonalization process may then be carried out as follows:

a) Select a function |g,), which may be oneof the initial functions or a

linear combination of them,
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by Let all the P,{z)associated with a certain column p operace on |g,). The
symmetiy sct of functions obtained may be taken as one of the iy possible

sets.
c) Select a function |g,), orthogonal to any P)(\”:)ml), say to Px%)lgl)'

d) Let all the P)(\,)/’,)nssociated with the column v operate on |g,). The set

of symmetry funcrions obtained will be orthogonal to the previous one.
Selv i , (32178 (
e) Selvct a function |p,), orthogonal to Pp‘f)h,l) and Pm),')lgz), ete.

The preceding sequence of operations should be continued until the n, independent

Y
symmetry sets have been obtained. The process may be cairied out by using only the

operators associated with one column (p=v=p=.....), but the freedom of choice is often

important to simplily the process,

It may happen that one of the functions selected is such that I)I\(\}:)|gi) =0, Ifitis

zero for one value of A, it will vanish also for all others, since

P Plgp) = P ep) = O (4-30)

This implies that the function |g;) does not contain any of the possible functions belonging
to the row p, or that it is orthogonal to them. One may then select a new |g;) function
orthogonal to the old one as well as to all previous symmetry functions P',%”gi) which

belong to the row p, and continue the orthogonalization process,

The symmetry functions W)Igi) are not normalized, but the normalizing factor N
is easily determined. The Hermitian scalar product of one of the symmetry functions with
itself is

N2 = (g |PY) P 1) = (il BEY L) (4-31)

This is the same for all partners, as the result is independent of A

If the function is one of the initial |f;) this result is especially simple, as
(filpﬁz)lfi) is the coefficient of |f,) itself in the expression (4-29) for pﬁznfi). The normal-
ized symmetry functions are given by

( % .
(filr»”yg I£) P)(‘Z)lfi) (4-32)
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Once the symmetry functions have been determined, the change of basis may be petformed
by means of the transformation

PRie) = T16) (PP 1) (4-33)

As already mentioned, the only non-vanishing elements of symmetric operators in the new
basis are those between functions which belong to the same row of the same irreducible
representation, Eq. (3-20)

There is a further important theorem arising {rom the [act that symmetric operators
commute with all the P}‘(ﬁ'), (Eq. 4-26), and from the multiplication properties of these
operators (Eq. 4-10). If the symmetry functions are obtained by means of the projection

operators, the matrix elements may be simplified as follows
B gl AP g) = &P A B g)) = (g5l A B P gy

(4+34)
= (&l ALRY ) =(PI1g;1 Al g

In patticular, if only the operators P‘{L’) corresponding to the column p are used

(P8 ATP{8)) = (81 AIPY g = (P 1A g)) (4-35)

As might be expected, the results are also independent of the particular row, A, of the
representation.
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5. TRANSFORMATION OF THE ANGULAR MOMENTUM
EIGENFUNCTIONS UNDER ROTATIONS

A rotation of the frame of reference that brings the set of axes x, y, z, into coin-
cidence with the new set x%y’ z% may be considered as the product of three succesive

rotations by the Eulerian angles 12, 8, y, that may be described as follows:

a) A rotation by y about the z-axis, leading to the intermediate set of axes
ry:

’ .,
"y e’
b) A rotation by f8 about the intermediate y “~axis.

c) A rotation by.a about the new z~axis, leading the final set of axes x|y 2"

These operations are illustrated in Fig. 5-1. All rotations are considered in the

positive sense. We may write the transformation matrix, Eq. (1-18) as the product

R(aBy) = R, «(a) R, ~(B) R,(y) (5-1)
The corresponding product of operators, defined as in Eq. (1-17) is

R(aBy) = R (a) Ry(B) R (¥) (5-2)
The usual ranges for the Eulerian angles are
0 <a<2n
0 <y<2n (5-3a)
0 < B

but for B = 0, the only other parameter necessary to specify the rotation is a + y and
similarly, for B = 7 only the difference a - y is relevant.

This cholce of limits insures a onc to one correspondence between the sets of

values of the parameters and the rotations of a rigid body. Other choices of limits are
possible.

When considering the transformation under rotations of the angular momentum

eigenfunctions, a rotation by 2r about any axis is no longer the unit operation, as the




eigenfuactions for half-integtal quantum numbers are transformed into their negatives,
The transformations of the angular momentum cigenfunctions to be considered ure those

of the two-dimensional unitary group, rather than the three-dimensional pure rotation group.4

The familiar language about rotations may be preserved if, proceeding as Bethe,’
the range for the angle of rotation about a given axis is extended to 0 < ¢ < 4r, and ro-

tations by angles differing by 2 are no longer considered equivalent.

The correspondence between these generalized rotations and the sets of Eulerian
angles can also be insured by an appropriate choice of limits. A convenient, symmetric
choice is, for example

~-r<a+y<nw

~r<a~y<w (5-3b)
2r<B<2n

To every set of parameters in these intervals there corresponds a unitary transformation
or generalized rotation,

The theory of the angular momentum and that of rotations in three-dimensional space
are very closely connected. The eigenfunctions |jm) may be derived as eigenfunctions of
the operators J2 and J,, and also as basis functions for the irreducible representations for
the three-dimensional rotation group. The relation between the operator R, (0), associated
with a rotation by an angle ¢ about an axis defined by the unit vector n, and the operators

n «J of the component of the angular momentum along the axis of rotation is given by !-3
R, (0) = el®(nd) (5-4)

so that, for example
Ry(a) = 2 R(g) = Pl (5-5)

The rotation operators commute with J% Also, the operator associated with a

rotation about a certain axis commutes with the operator of the component of J along that
axis,

Accordingly, the angular momentum eigenfunctions |jm) transform into eigenfunctions
of J2 with the same eigenvalue, j, under all rotations, For rotations about the z-axis, the

eigenvalue m of ] is also preserved, the eigenfunction being only multiplied by a phase
factor
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R (@) |jm) = |jm) e'™@ (5-6)

However, a rotation about any other axis will change the dircction of the axis of
quantization and consequently the eigenvalue, m, of the ], component. In general, the
transformed function will be a linear combination of functions |jm”), with m” ranging from

~j to j. For example, the transformation equation for a rotation about the y-axis is

R(0/30) |jm)

i

2." [jm”) (jm TR(0B0)|jm)
" (5-7)

il

S lim*) d4)
mﬂ “’n ) dm'm(B)
In the general case,

R(aBy) |im) - Z |jm") (jm*|R(aBy)|jm)
" (5-8)
= 3 lim") D' (apy)

If the rotation is expressed as the product R () Ry(B) R (y) and Egs. (5-6) and
(5-7) are introduced, we can write

R(aBy) [im) = 3 |jm") eim@ d(i) (g) eim¥ (5-9)
m

This transformation matrices are irreducible representations of the three-dimensional
totation group or, more precisely, of the two-dimensional unitary group. 4 Explicit expressions
for the matrix elements in terms of the three Eulerian angles have been given in the literature, 13
The definitions used by different authors are slightly different. The conventions we have
followed are those of Wigner! and Edmonds. 2

m’m G+m G =m*) mm+v T

. . . /2 H e : ’ m=m
49 () - [‘J—-* il -k ‘“”] (cos %”&-nv(’,,"‘)(”“‘ )(tan 8™ (510

the summation index, v, assumes all integral values for which the arguments of the factorials
are non-negative.
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The rotation matrices have certain symmetries arising from their unitary character
and the choice of basis functions. They are obtained very easily from the symimetry properties

of the matrices for the componcnts of the angular momentum,

With the usual choice of phases, the only non-vanishing elements of J , J,, and Ty

are of the form

(jm]J ,ljm)

m

]

Gym £ 1] Yjm)

% [GTm (G tme DIV (5-11)

(jym £ l]]y|jm)

i

¥ zi—[(j Tm)(j +m+ INRZ:
I'he first symmetry property
(iln'|]u|jm) = (ij“Ijm')* (p = x,9,2) (5-12)

simply expresses the Hermitian character of these operators, and is shared by all their

integral powers, (]#)k.

The second symmetry property gives the relation between complex conjugation and

a change in sign of the projection quantum numbers (inversion of rows and columns),
Gm)] i = (=D =G = w ], = m) (5-13)
For the integral power., this relation takes the form
Gm’ () 1im)* = (=™ =™k G, =7 )] )k, -m) (5-14)
and we also have
Gm 1G] im)* = ™™ Gy = m |G )k, - m) (5-13)
For the rotation operators

e iOJ = -l— i k -
RP(O) e It N (1]“) (5-16)
the first symmetty relation corresponds now to the unitary character of Rp(()), and the second
takes the same torm of Eq. (5-15). In summary, the two independent symmetry relations of

the matrix elements of the rotation operators are
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(m"|R{jm) - (jm|{R~}}jm")*

(5-17)
GmiR[jm) = (= D™ =@, -m’|R ], -m)*
In particular, for rotations about the y-axis, the matrix elements are real, and
(0 el
dm,m =B = dmm,(B) (5-18)

For every value of 3, the symmetry relations conncct four elements, as follows

A B R R C L R 7 R G L R AP (¢ B CR 1)

s m

The explicit expressions for some particular values of 8 are of interest

dD 0y = 5 (m’m)
mm

(5-20)
4D (m) = (<D™ 5(m’,~m)
mm
We shall also make use of the relations
¢ (B +m = (=i 4D, (p)
(5-21)

4D (z=p) = (04D ()

The matrices for B = %—are of special interest, They appear as coefficients in
the linear combinations that belong to the different irreducible representations of the cubic
point groups. They are also convenient in problems involving coordinate transformations.
The matrices for rotations R(0B0) are, in general, tedious to compute. Their elements may
be expressed in terms of rotations which involve only rotations about the y-axis by #/2,

together with rotations about the z-axis, the latter being diagonal in the usual representation.

The relation is?

R(0B0) = R(- -%OO) R(0,~ —s’z'—, 0) R(B00) R(O —2”— 0) R<'"2— 00) (5-22)

For 8 = —5—-, thete is a further symmetry relation, in additien to  Eqs, (5-19).
This follows from the last of Egs, (5-21)
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(l) T (- j—m” () o -
(L) = -pim"dl) oy (5-23)

This implies that, for a given value of j, only the clements in a certain region of

the matrix, such as the shaded region in Fig. 5-2, nced be calculated from Eq. (5-10).

FIG. 5-2

. () . . . . .
Fables of d ) (—'2'—) up to j = 2 are given by Edmonds, 2 Since these matrix elements

are necessary for the purposes previously indicated, we have computed a table including

values up to j = 12,5, The results are given in cxact form, expressed as square roots of

integers, which are also given as products of prime factors.

In problems involving correlations between cubic and trigonal symmetry, values of
)
d ! (r), where 7 is the tetrahedral angle, are neccssdry. These have also been computed

up to j = 12,5, Also, we have computed values of (l (——) uptoj=7.

Further details on the computations are given immediate preceding the tables.

Relation with the spherical harmonics

The clements of the rotation matrices Dn(‘ik) {afy) ate functions of a more general
nature than the spherical harmonics. They are in fact the cigenfunctions of the symmetric
rotor (Ref, 1, p. 214) The indices m and k are the eigenvalues of the projection of the

angular momentum on the spacc-fixed z-axis and on the body-fixed symmetry axis,
respectively,

Since they are the elements of a unitary matrix they satisfy the orthonormality
relations

2D (afy)* D) (apy) = 5k)
m (5-24)

§D"k (afy)* DU (aBy) - 8(m,m*

Also, the D,E") are orthogonal functions on the surface of the unit sphere, This
follows from the fact that they are the elements of the irreducible representation matrices

of the two-dimensional unitary group. The orthogonality relations take the form
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_afinds

. "') .. r
fp@ Ry p 47 ®R)dR - _*—zl,l.l 8(i,i) 8 (m,m9 8 (k,k" (5-25)
where
h=[dR - 8n?

The relation between the spherical harmonics and the matrix elements of the rotation
matrices is easily established. In the present case, Eq. (1-4) takes the form

YP (0,4) = R(aBy) Y}‘,J(()’, ) (5-26)
The matrix clements of the rotation matrices are defined by Eq. (5-9), which is now
R@aBy) Y3067 - 2¥% (0%, DD (apy) (527)

so that
Y30,6) -2 Y3 (0,600 apy) (5-28)

In particular, we may consider the rotation of the coordinate axes such that the point
on the unit sphere with otiginal coordinates @, ¢ has in the new reference system the new
coordinates ¢’ = 0, 6°- 0. Since the point in question lies on the new z-axis, the first and
second Eulerian angles of the rotation are y = ¢ and B = 6. The third angle is arbitrary.

Since the only spherical harmonic different from zeroat ¢”= 0, 0°= 0 is

)
Y% (0,00 - G—%—;l)/’ (5:29)
only one term on the right-hand side of Eq. {5-28) survives, and we have
Y% (0, 6) - (z—f;*-‘—)'/’ DD (a09) (530)

%
(2 £4+1 (£) imeh
<<--——4”+) dOm (0) e

By vse of the symmeity relations we also obtain

%
m = 2_{_+L -~ 1)ym (/f’)
" (0, ) - <4n>( b oY ) (531)

where y is an arbitrary angle,

5-7




]

6. POINT GROUPS

A. SINGLE GRQUPS

The symmetry operations of the point groups may be classified into four different
types:

a) Proper rotations about an axis ot symmetry.
b) Inversion through a center of symmetry.
c) Reflections in a symmetry plane.

d) Improper rotations about an alternating axis of symmetry,

The last two types of operations may be considered as the product of the inversion
and a proper rotation,

A reflection is equivalent to a rotation by 180° about an arbitrary axis perpendicular

to the plane of symmetry, followed by the inversion through the intersection point.

An improper rotation by an angle ¢ is equivalent to a proper rotation by ¢ + n followed
by an inversion through the orgin.

The inversion commutes with all symmetry operations.

The structure of the point groups fits into a simpler scheme if all the different
operations are classified into the two following types:

a) Proper rotations.

b) Products of the inversion and a proper rotation.

The point groups C, D, T, and O, consist only of proper rotations. The rest are
either isomorphous with one of these ar the direct product of a rotation group and the in-
vetrsion group.

A comprehensive symmary of the point groups and their operations, with the exception
of the icosahedral, is given in Table 6-1. They are classified into three main groups, according

to the possible values of the Lulerian angle B8 of the rotations. The principal symmetry axis
is chosen as z-axis.

Under the headings for each point group are listed the operations. Rotations with

B = 0 are designated simply as R (¢) where ¢ corresponds to the value of a + y.



TABLE 6-1

SYMMETY OPERATIONS OF THE POINT GROUPS

CYCLIC AND RELATED GROUPS: (f3 =0)

. 2
/’k n

0 OPERATIONS

2n OPERATIONS

Cyclic Groups Direct Product [ x C Isomorphous with C,,
n odd n even n even n odd
C, S2n Can S2n Cih

R (1) R () R (30
LR, (¢) LR (b, + 1)

DINEDRAL AND RELATED GROUPS: ({3 =0,n)

-2
‘/’k T k
2n OPERATIONS 4n OPERATIONS
Dihedral Groups Isomorphous with D | Direct Product | x D, | Isomorphous with D,
n odd n even n even n odd
Dn cnv Dnd Dnh Dnd Dah
R (6)) R () R (6 R (61
R(‘ﬁk,”) R(d’k’") R(‘/’k’ﬂ)
1R (¢)) IR ¢y t )
I+ R(y,m) I+ Ry, I+ Ry + Z,m)
CUBIC GROUPS: (B=0,n, %)
a y = O, o, 4 —;—-
12 OPERATIONS 24 OPERATIONS 48 OPERATIONS
Rotation Rotation Isomorphous | Direct Product | Oirect Product
Group Group with 0 IxT Ix0
T 0 Td Th 0,
R R R R(af R
(tatBiy)mkn { (aBy) (aBy) (afy) (aBy) (aBy)
I . R(aBy) I R(aBy)
R(afy) I+ R(aBy) R(aBy)
= 108
(taiﬁiy)—krn;_-{ I'R(dﬁy)
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Rotations with 3 = n are designated as R(4, 7), where ¢ corresponds now to a ~ y. The
angles ¢, are of the form

¢, = 2Lk (6-1)

1

and k assumes the n possible integral values in the interval

-Lack <.

5 s (6-2)

e
=

For those operations with rotation angles ¢ = ¢ + -, only one sign need be
. - . n .
chosen. If the convention - # < ¢ < = is followed, the minus sign may be chosen for n

even, the plus sign for n odd.

For the cubic groups, the possible values [or the angles of the rotations R(afy)
are specified by the conditions given in the first column,

B. DOUBLE GROUPS

We have already seen that the existence of angular momentum eigenfunctions with
half-integral quantum numbers lead to the consideration of their transformation propertics

under the operations of the two-dimensional unitary group, rather than the three-dimensional
pure rotation group.

Similarly, the transformation matrices of those eigenfunctions under the operations
of a point group do not afford a tcpresentation of the group., However, these matrices, to-
gether with their negatives, form a (matrix) group with twice as many operations as the
point group. The group of operations isomorphous with that matrix group is calledS the
*'double group’’ of the point group in question. .

To every operation R of the ''single’’ group there correspond two operations of the
double group that may be designated as R and R. The number of classes and irreducible
representations is not always double, 5°® We shall give the irreducible representations in

the sections dealing with the individual groups.

All the representations afforded by |jin) eigenfunctions with integral quantum numbers
(the integral representations) have identical matrices for R and K, being also representations
of the single group. For all the representations afforded by |jm) functions with half-integral

quantum numbers (the half-integral representations) the matrices of R and R are the negative
of each other.




The definition of the operations R and R, although arbitrary to a certain extent,
may be made in a consistent form by appropriate conventions as to the choice of parameters,

For example, with the choice of limits for the iulerian angles given by Eqs. (5-3h)
~n<a+y<nw
-r<a-y< 7w (6-3)
“2r < B <2n

we may define the operations R by requiring the angle 3 to be within the limits

-7 <B < (6-4)
while the operations R will then cotrespond to values of 8 outside this interval.

Since the rotation matrices satisfy the equation

DXaBy) = (~1)2I DWW (a, B + 21, ) (6-5)

this establishes a one to one correspondence between the points in both regions, as well
as the proper relations between representation matrices,

For a rotation by an angle ¢ about any arbitrary axis, the trace of the matrices for
j=L s
2

x (V) - -—Sitl—d-)— = 2 cos —g~ cos f——;—l/- (6-6)

sin L b
2
Therefore, according to the previous definition the operations R correspond to angles

of rotation ~ 7 < ¢ < = and have non-negative characters for the E,, representation.

The operations of the double point groups may he oltained from those of the single
point groups given in Table 6-1 by an extension of the limits for the angles. The number
of operations of each type is doubled, but the relations of isomorphism or direct product
are equally valid for the double groups.

For the cyclic, dihedral, and related groups the new operations are most simply
defined by extending the allowed interval for the angles ¢, to

~2m < Py < 2 67
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with k assuming now the 2n integral values in the interval

-n<k<n (6-8)

Although the operations R and R may be defined in a consistent way, by assigning
to them different sets of Eulerian angles, according to appropriate conventions, it may be

pointed out that this is not strictly necessary for most practical purposes.

Consider, for example, the fundamental problem of expanding an arbitrary function

[f) as a sum of terms each of which belongs to a particular row of an irreducible representation
of the symmetry group

) = 2 |fEyN (6-9)
YA

The different terms in the expansion are obtained, as indicated in Eqs. (4-17) and (4-18),
by applying the corresponding projection operator

(y)
tyn = B - B 1y N (6-10)
For the double groups we may use the expression for the projection operators (4-20)
in the form X
p}\({)“) = 'g— ﬁ‘[(yMRth)'R + (PA RIyM)* R 1|fyn) (6-11)

where h is the number of operations of the double group. But from the definition of the R and
R operations we have
(PAIRIYA) = £ (yA Rlyd)
(6-12)
RlfyA) = &+ Rlfyd)

with the plus signs if y is an integral representation, and the minus signs if it is a half-
integral representation. In every case, however,

(YAIR[yA*RIfyA) = (PAIR{A*R [fA) (6-13)
Accordingly, we may let h represent the number of operations of the single group

and include only the R operations in Eq. (6-11), and the expression for the projection
operators will be identical with that for the single groups.
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The result is based only on the one to one currespondence hetween R and R

operations and the basic property (6-12), and holds independently of any choice of para-
meters to differentiate between them.

C. IRREDUCIBLE REPRESENTATIONS

The irreducible representations of the point groups are given in Tables 6-3 and 6-4.

In the direct product groups I x G, two representations, I“8 and [}, correspond to
every representation I" of the group G. The subscripts g and u indicate their symmetric or
antisymmetric character, respectively, with tespect to the inversion operation. The matrices

for the representations FB' and [}, are obtained from the matrices I’(R) of G, according to
the scheme

TABLE 6-2

1xG R I.R
T, DR) TR
r, I(R) - I'(R)

The representations for the groups which are isomorphous with a group consisting
only of pure rotations are taken to be the same as for the latter groups. The correspondence
between the operations of two groups is easily established by the equality of the rotational

factor of the operations. For example, the ¢, angles of the rotational parts of the operations
of D, may be written in the forms

¢, = 2 2%

(6-14)

1§

& 2n 9k
¢k+n 2n (Zk + 1)

As k assumes all integral values within its interval, Eqs. (6-2) or (6-8), the angles take
all the possible values for the corresponding operations of D, .
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The preseat choice of representations is such that these are completely reduced for
the operations of the subgroup C_ of rotations about the principal summetry axis, For these
operations the representation matrices are diagonal, with elements of the form eiu k. In
this form it is possible to assign to every row of an irreducible representation an index, p,

such that only linear combinations of angular momentum eigenfunctions with eigenvalues m
of the form

m = p + np (6-15)

belong to that particular row. As usual, n is the multiplicity of the axis selected as z-axis,
and p isan integer, positive or negative,

C-1. CYCLIC AND DIHEDRAL GROUPS

In the case of the non-cubic point groups it is possible and convenient to assign
a similar index, y, to the irreducible representations themselves, This index may be taken
asy = pory = |p|, and both are related to the possible values of J, for the eigenfunctions
that belong to the corresponding representations by Eq. (6-15).

In addition to the physical meaning that can be given to y and y, it is possible to
express the characters and matrix elements of the irreducible representations as explicit
functions of these parameters, This has the further advantage that the characters and
representation matrix elements for the double groups are given by the same expressions as

for the single groups, by simply allowing y and p to assume half-integral values within their
intervals,

In what follows, all the results that shall be given for non-cubic point groups apply

to the ordinary single groups for y and p integral, and to the corresponding double groups
for y and p integral and half-integral,

The correspondence between y and the customary designations for the irreducible
reptesentations of these groups is straightforward, as it may be seen from the tables.

The representations characterized by y = 0 are one-dimensional and have real
characters, ¢ I. In particular, the characters for the rotations about the z-axis is + 1.
These representations are usually designated by the letter A,

The representations corresponding to the maximum value of y (y = n/2 for C_, D
and direct product groups, y = n for the groups isomorphous with C, or D,,) are also one-
dimensional. The character for the operations involving the rotations by the smallest angle
about the z-axis is — 1. These representations are designated conventionally by the letter B,
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For other intcgral walucs, y corresponds to the subindex usually assigicd to the
doubly ~degenerate E representations, Although the irreducible representations of the
groups C_, 8, , and C ; are all one-dimensional, the pairs of complex conjugate repre-
sentations are often treated as a two-dimensional representation of type E.

There is one more index required in order to differentiate between the two repre-
sentations of the same type, A or B, which occur in the case of the dihedral groups. The
two representations within each type are conventionally distinguished by their character,
+ 1l or ~ 1, under the two-fold rotation R(0#0) about the y-axis. The symmetric representations
are designated as A or B, the antisymmetric ones as A, or B,

All dihedral groups have the representations A and A, The D, and related groups

posses the pair B and B,, but for n odd the single groups D do not have B-type representa-
tions.

The corresponding double groups always possess a pair of representations of type
B. For the D, groups these are also representations of the single group, B, and B,, while
in the case of D (n odd) the pair of B-type representations emerge as half-integral repre-

sentations associated with y = n/2, In the latter case, the characters of these representa-

tions under the two-fold rotation R{(0r0) are + i or - i.

The usual notation for the non-cubic single point groups may be extended to cover

the corresponding double groups with a minimum of changes by the following provisions:

a) The subindex y for the Ey two-dimensional representations may be allowed to
assume half-integral values within its interval,

b) In the case of the D and related groups the two one-dimensional representations
of type B may be designated as B and B, irrespective of whether they are integral (n even)
or half-integral (n odd). In the latter case their characters under R(0#0) are + i and - i,
respectively.

The notation followed for the groups C y and Dy, for n odd i+ the same as for the
isomorphous groups C, and D, , respectively. The usual notation for the single groups
is based on the direct product relations, C;, x C_ or Cy, x D, the representations being
labelled by a prime or a double prime to indicate symmetric or antisymmetric character for
the reflection o, However, the direct product relation does not extend to the double groups
D,y Although the direct product notation could be extended to the C, double groups, it
becomes unnecessarily complicated because the C,; = C_ double group has four itreducible
representations. On the other hand the notation based on the isomorphism with C, or D,
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CYCLIC AND DIHEDRAL GROUPS:

TABLE 6-3

IRREDUCIBLE REPRESENTATIONS

- 21
Vs it k b = -2 k
Single groups integral -n/2 <k ¢n/2 ~r<pen
Double groups hl:ltfe-?;x;::ii -n<k<n ~2r < ¢ < 2r
C (n even) §, R.(6.) LR "
n Rz(¢k) r (n odd) cnh z ¢’k t Ry ¢k+ T) [
A 1 0 A 1 1 0
‘ e'}’d’k y ) e‘)"i’k el}'(¢k+ n) y
h)’ hy
(O<y<n/2) - iy, -, (O<y<n) e'iy¢k - iy + %) y
B (-Dk n/2 B 1 -1 n
(nodd) §,,
= 1xC,
(n even) C.n
D, R (b)) R(¢, m)
[
Coy R () G
A, 1 1 0
A, 1 -1 ‘ 0
; oY%k 0 0 o TPk y
Y o -iyd
(0<y<n/2) 0 tybi A -y
B, (- 1k (- Dk n/2
n even
SR -2 SO | DU 3 LI ek ____ ] w2 .
B -k -1k 2
n odd 1 ( )k i( )k n/
2 (1) ~i(~1) n/2
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Tq (uasrs u)

axi =
P%a (ppou)
u 1 - 1- 1 ta
_ 1
u 1- 1 1 I d
A- ,(1— - co 2
LR PSR AL I [ NEFE VORI 1pa-2 207 1962 0 (©>4>0)
A
q
A
m.m gyt 0 0 o Agy” Tgphs 0 0 Yok
0 1 1 1 1 ‘v
gqa
. a (ppou)
" (@2« Mppy-l (& + 7y SR GO Mrog wono v)

(pamBnuo)) ¢-9 3|qeL
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is simpler, casily extended to the double groups, and mote in line with that of the other
nop-cubic groups. The correspondence between this and the usual notation for the repre-
sentations of the single groups is easily established, as follows: for y even, the present

Ey cortesponds to Ey/2 while for y odd the complex conjugate of the present E(“,y) cor-
responds to ES7a

C-2. CUBIC GROUPS

The operations of the cubic groups have been specified in Table 6-1 in a rather
general form, by the conditions to be satisfied by the sum @ + 8 + y of the Eulerian angles
(referred to the usual cubic set of axes). It may be easily seen that, for example, the con-

dition a + B + y = km, (k = integer) is satisfied by the Eulerian angles of twelve non-
equivalent rotations

(6-16)

g ==L
2 £z

L =
7" Y0

The individual operations of the groups T and O are listed in Table 6-5. The cor-
responding transformations of the coordinate system are indicated in Fig, 6-1.

The operations of the remaining groups, T4, T}, and O,, may be obtained from these
without difficulty.

The tables of characters for the cubic groups are given in Table 6-6. They are
given for only half of the operations of the double groups. The Eulerian angles listed
under the class headings have been taken according to the convention of Section 6,

Egs. (6-3) and (6-4). The number of operations in the classes containing two-fold rotations
R(any) are given as fractions as a reminder of the fact that in the double groups the cor-
responding R operations do not form new classes,

The irreducible representations of the group O in terms of the Eulerian angles are
given in Table 6-4. These are also the representations for the isomorphous group T .
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The matrices of the representations of O for the operations of its suhgroup T afford
the irreducible representations for T. Our choice is such that conjugate representations in
0O have identical matrices for the subgroup T, Thus, for example, the matrices for F and F,
of O give the same matrices for the F representation of T, Similarly, the matrices of the
tepresentations Ey/, or E5/, of O afford the representation Ey/, of T,

The representation matrices for the self-conjugate representations, E and Gy /4, of O
in the form given afford representations of T which are not in reduced form, The reason for
this choice is to avoid the presence of complex coefficients in the expressions for the
symmetry functions. These representation matrices may be brought to reduced form unuer
T by a unitary transformation, Eq. (3+3), by means of the matrices

Ay (VT IWV2 6-17)
i/vZ -i/NT

W o 0 T
aesm - |0 ANE ANT (6-18)

0 -VZOANT 0

The representation matrices for the direct product groups T, and O, may be obtained
by the usual rule (Table Ga2)s
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-TABLE 6-4

IRREDUCIBI.E REPRESENTATIONS OF THE GROUP O
INTEGRAL REPRESENTATIONS (CUBIC AXES)

r " (a, Bay)
A, 1
A, cos2(tatfB ty)
—%(3 cos?B ~ 1) lg—sinzﬁ cos 2y
E
‘?sinzﬂcos 2a -%— (1 + cos?B) sin 2a sin 2y
-%—(l-rcos Bleila+y) yiLsinBeia %(I—COS B)ei@=y)
F - L sinp el cos L singeiy
1
Vz N3
L (1 -cos pyetita=y) L gingeia  L(14cospByei@ty)
R g nPen e e
F2 l‘A2 X [‘Fl
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TABLE A4 (Continued)

IRREDUCIBLE REPRESENTATIONS OF THE GROUP 0O
HALF-INTEGRAL REPRESENTATIONS

r Cle, B, y)
Liasy —;-(a-y) T
c 2 cos -9 e sin -éi
e - (a = y) L @+
— a - r — — -
-e 2 " sin g e 2 Y o -g
=3 —
A E
2 1/2
a2 i TOPIp! i(%a— %y
ex(za +s y)c3 el( a+ lz-y)\/.;czs el(%a T}/)ﬁcsz el %—a 3'}’ 2
1.3 i(lgad (g L i(lg- 3
i(-a +2-9) i(Sa+=y) i(-a- -y) i(-a—-<vy)
-e ¢ 2 \/_fczs e 2 2 (c>=2cs?) ¢ 2 27 g342s5c?) ¢ 2 2 \fgcs2
G
3/2 1 1.1 1 ]
it=L g +dp) i~ av &) i(-da-Ly i(-da-dy) _
e ? %y\/‘;csz e 2 2 (s3-2sc?e 2 3y(c}--Zszc) e ? 23k
i(~2 a + 29 i(—2a+lyy _ i(—2a- Ly i(-2a-2y)
-e *? 2? s3 e 2 2732 e 2 23k 2 203
-
c-cos £, s=sin &
2’ 2
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TABLE 6-5

GROUP O  Fulerian Angles (Cubic Axes)

SUBGROUP T COSET T‘CQ’

R (Y!/jsa) R Cz' (Ygﬁ,d)
E (0,0,0) C2 ‘(xy) (0,77,-—5—)
C2(z) (”’O’O) CZ '(-XY) (07”, ""‘g‘)
Cz(Y) (0,n,0) C4(Z) (_?27“ 10,0)
Cy(x) (0,n,7) Ci i) (- £,0,0)
Cy(1,1,1) 0%, ) coMy (m-2ym)
C3("'1) l’“l) (0’_"1—,"'"2!‘) Cz'(-XZ) (”’—5’ 10)
Cy(Ly-1,-1) (-2 L) C(x2) 0L ,n)
C3(-1,-—1,1) (”a“— ’-E) C4(}') (0,—%‘,0)

-1
C3 (1’1’1) (_;‘1—;‘3”) C4(x) ("—g"’—%" %)
C;l("lvl, -D ("'%9 ‘%‘s ) Cz’(yz) (‘;—9 '%‘v 'g")
» n n

€ H1y-1,-1) -z, 2,0 C, (~y2) =3
Cyl-1,-L1) - 2,20 cri) (L 50-P
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CHARACTER TARILES FOR THE CUBIC GROUPS

TABLE 6

T | E $c, AC, Acy!
("’ O,O) (8 a n
(v,8,0) 0, n,0) 0,+ 0 | L, +Z.0)
('”,"’0) 2 2 2 2
v 4—_—:___
A 1 1 1 1
1 1 1
Integral  E ; 1 . 1 ) e
F 3 -1 0 0
E, 2 0 1 1
Half-integral G 2 0 € el
% 2 0 el
Ty E S 8C, 65 2oy
c E 4 ¢ 8C, 6C4 L2 ¢
(m,0,0) 2,00 | © mt 4
(0, + 2 + 2.
(y\B,a) (0, 0,0) (0, »,0) 27 271 (0,44,0) m +L-,0
(t L’t-ﬂ'—,o) n F:d n I
(”’ ﬂ,,O) 2 2 ('2_1 iT’-_z‘) ("3‘11'5—1 7 )
A, 1 1 1 1 1
A, 1 1 1 -1 -1
Integral E 2 2 -1 0 0
F, 3 -1 0 1 -1
F, 3 -1 0 -1 1
Ey 2 0 1 J? 0
Half-integral Es/’ 2 0 1 -—ﬁ 0
Gl/’ l 4 0 -1 0 0
Th=IxT
Op=tx0
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|1

cuBliC

E
(0,0,0)

Coty)
(0,1,0)

C3(|,|,I)

r.I
(0,212)

Cy(-1,71,1)

Ir.w
(77’.2, 2)

C,l1-1=h

r, T T
( 2,2)

C3 (—', ‘,-l)

GROUP O :
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Cy (1, 1,1)

T Fm

-1
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‘22 20
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GROUP O: REDUCTION OF THE REPRESENTATIONS l"i

IRREDUCIBLE REPRESENTATIONS

j

IRREDUCIBLLE REPRESENTATIONS

10

11

12

reg.

A1
E
AZ
A, E
E
A A, E
A, E
A, 2E
A, A, E
A, A, 2E
A, 2E

-

2F
2F |
3F,
2F,
3F,

3F,

3F,

2F,
?F,
2F,
2F,
3F,
3F,

3F,

3F,
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1/2

3/2

5/2

7/2

9/2

11/2

13/2

15/2

17/2

19/2

21/2

23/2

25/2

Ey/a
Gy/2
Es;2  Gs3yy
Eiy2 Es;a Gip
Ei/a 2Gy/,

Ei/2  Essa  2Gy,,
172 2Essa 2Gy,,

172 Essjp 3Gy

2E,,, Es/y 3Gy,

Ky, 264, 3Gy,

172 2Es/p 4Gy,

2B ,, 2E5,, 4Gy

3E1/2 2E¢, 4G3/2

Cians =200+ Ty




7. SYMMETRY FUNCTIONS

The transformation properties of the angular momentum eigenfunctions under rotations
have already been considered in Section 5. It may be mentioned that the transformation co-
efficients depend only on the eigenvalues j and m, and they are independent of the kind of
angular momentum, whether orbital or spin, of the number of particles in the system, etc.

This is no longet true when the transformation properties under inversion are con-
sidered. The spin eigenfunctions are invariant under inversion, but the orbital angular

momentum eigenfunctions of a particle transform as the spherical harmonics, that is

1 dm) = (=% 1 4m) (7-1)

As the angular momentum eigenfunctions in atomic or molecular problems are linear com-

binations of product functions of several particles, each with a certain value of 4, the
product functions transform as

<A,
1 l'{’,lml) [Aamy)e o o1 4m)e o0 = (- n- 4 Mlml)l Aomo)e o [ 4m). .. (7-2)

Accordingly the functions will be symmetric or antisymmetric with respect to the inversion
according as to whether the sum %4, of the otbital quantum numbers is even ot odd. The

a 1 . .
even or odd parity of functions may be represented by an index & which can take the values
Oor 1, respectively, and we may write in general

IHejm) = (-1)?|ojm) (7-3)

In what follows we may always assume that the angular momentum eigenfunctions under
consideration have a definite parity, specified by the quantum number o.

We shall now proceed to determine the general expressions for the linear combinations
of angular momentum eigenfunctions that belong to the different irreducible representations
of the point groups. For each representation of dimension d they form sets of d partners, each
characterized by a different value of the index g, that labels the rows of the representation.

In general, the operations of the group transform any of the partners into a linear combination
of all of them as in Eq. (3-10).




Rifeyp’) = )’ilfayp)(oyﬂlrﬂayﬂ') (7-4)

The indices y,p’label the rows and columns of the irreducible representation, the indices
o and y label the representations themselves, and the index [ stands for all the remaining

labels or quantum numbers specifying the function and which are not affected by the group
operations, and will be omitted unless necessary.

For the simplest groups, the symmetry functions formed from the |ojm) eigenfunctions

may be found by inspection but in general the use of the projection operators leads to the
desired results in a simple form.

The expression for the projection operators (Eq. 4-14) to be used is

}7‘2’?) = % E(M!tIRMyu')‘R (7-5)

As indicated in Section 4, if the original set of functions whose symmetry linear
combinations are to be determined afford a representation (reducible or irreducible) of the
group, all the possible sets of symmetry functions for a given irreducible representation
may be obtained by using only the operators associated with any particular column of the
irreducible representation. In our case, the | ¢jm) basis functions associated with given
valuesof o and j, and all the corresponding values of m from ~j to j, afford a representation
of the group. Moreover, with our choice of representations, all the symmetry functions

belonging to the p-th row of a tepresentation must be linear combinations of | ¢ j m) functions
with the possible values of m given by Eq. (6-15)

m=p + 0p (7-6)

These functions are all different from those corresponding to another row p’(since the
difference pu’ - p is never zero or multiple of n).

Conversely, even when the |ojm) functions of the fanily defined by m = x + np
are not themselves symmetry functions, they never contain symmetry functions belonging
to a different row p’of the same irreducible representation.

According to Eq. (4-9) the projection operators associated with the column p of an
irreducible representation give a non-vanishing resule only when they operate on functions
that contain symmetry functions belonging to the p-th row.
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It follows that in order to obtain all the symmetry functions that belong to a certain
representation it is sufficient to apply the projection operators associated with any fixed
column 4 to the | o jm) functions with m = p + np. When applied to the same |ojm), they
generate a set of partner functions, each belonging to the row y” of the corresponding
operator, P,l(,);l).

For example, in the case of the non-cubic point groups the highest dimension of
the irreducible representations is d = 2, and the values of the indices p and p’ labeling the

rows and columas of the representation F‘y are y and ~y. The operators to be considered
are

Ysy Y=y

(7-7)
P(y) p(y)
=YY it et 4

The operators P(y) and l?_(;)y give a non-vanishing result only when they operate on
y b
functions which belong to the first row or contain such functions, With our choice of repre-

sentations, the first row functions are characterized by eigenvalues m of the form m =y + np,
while for their second row partners m = — y ~ ap.

The operator p(») generates the first row partner and the operator P(y) the second
’ . . - M . *
row partner when operating on the same first row function. All the independent paits of basis
functions are obtained by the action of these operators on the |ajm) basis functions with

m = y + np. The functions obtained are all independent and orthogonal to each other, and
no redundancy problems arise,

In the case of the non-degenerate representations A, A,, B, and B, the symmetry
functions are of the forms

lojm) t {aj,—m)
and it is only necessary to operate on the functions with m > 0. The functions with negative
values of m yield symmetry functions differing from the previous ones only by a constant

factor.

The redundancy and non-orthogonality problems arising for some representations
of the cubic groups are slightly more complicated. They shall be consider later,

~d
.
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A. NON CUBIC GROUPS

In addition to Eq. (7-5), we shall need the following expressions for the trans-
formation of the |ojm) functions

R>g) |ojm) = [ojm)e™® (7-8)
R(g,m |ajm) = (-1} ™|oj,-me i m® (7-9)
[ojm) = (~1)% [o]m) (7-10)

We shall also make frequent use of the familiar summation formula

n=1 i—ﬂ-k/\
e e " = n.8(x,np) (7-11)

where p is an integer, positive or negative, and 8(A,np) is the familiar delta function

1 for A =np

8(A,np) = (7-12)
0 for A # np

Groups Cn

Since the representations are one-dimensional with characters

x#p,) = o P (7-13)

the effect of the projection operators on the | #jm) eigenfunctions is

i(m=p) 20
PW |gjm) = L z lojmye B o |ojm) 8mu+np) (7-14)

The functions |¢jm) and |oj, -m) belong to complex conjugate representations. Although
these are often considered as a two-dimensional representation Ey, (y = |ul), it should
be kept in mind that the pairs of functions arenot *‘partnets,’’ since they never transform

into each other under the group operations. These remarks apply also to the S, and C_,
groups.
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Groups 3, (n odd) and C_, (n even)

Since these are the direct product groups I x C_, the effect of the projection operators
ont the | o m) eigenfunctions is as [ollows

P#8&)|gjm)

it

}ojm) 8(o,0) 8(m,u+np)
(7-15)

I

PUgjm) = |ojm) &o,1) 8(m,p+np)
so that the functions with eigenvalues m = u + np belong to the representation yg or yu

according as to whether their parity is even or odd, respectively,

Groups S, (n even) and C_, (n odd)

These groups are isomorphous with the corresponding C, . The symmetry functions

are

)by |y T )

P¥ gim) = |ojm L v e (7-16)
2n g

If the angles ¢, are expressed as in Eq. (6-14) and consider that we can also write

-i% na(2k+ 1)
(=D7 = e °° (7-17)
we obtain
_ ) imepreno) 2X 2k i(m-preno) 2L (2k+1)
PWojm) = loj m)é% e n e 2n = {ujm) 8(m,p + no + 2np)  (7-18)

As indicated previously, for y = |u| even, the representations designated here as Ey correspond
to the representations of the single group €, usually designated as E);,’z’ while for y odd,
the complex conjugate of F‘n—y corresponds to the usual E';2. It may be noticed that for given
integral jm, if a function of a certain parity belongs to an E *representation, the corresponding
function of opposite parity will belong to an E’*representation,

Groups Dn

Unlike the groups considered thus far, the dihedral groups contain symmetry operations
involving rotations about axes perpendicular to the principal symmetry axis. The projection
operators are no longer diagonal in m, and when acting on the |¢jm) eigenfunctions generate
linear combinations of |¢ jm) and |¢ j,~m), as follows;
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Ji ptAD ojm) = \/% Hajm) + (=) " ™aj,-m)} 3(m,np)

i (7-19)
V7 pA”) lojm) =/ -21— Hojm) - (<)) "™ |oj,-m)} 8(m,ap)
I)y(’);) lejm) = |aojm) 8(m,y + np)
(7-20)
Pjayh’i m) = ('-1)i+ m+ 2y {o},~m) 8(m,y + np)
For n even, the representations B, and B, are integral, and we have
VZ PP ojm) - \/’g' fojm + (~1)1 " ™| gi,-ml (m, % v ap)
(7-21)

V2 P2 jgjm) - @ Hojm - (=)' ™| oj,-m) 8(m, -5 +op)

For n odd, the representations 3, and B, are half integral, and the functions that
belong to those representations are of the form

V2P fojm) = L 4o im i () "o, ml am, 2 ap)

(7-22)
VPP fajm) < S tlojm) = i~ o= m) 8(m, - + ap)

It may be noticed that the average value of J, in the non-degenerate states is
always zero,

Groups C_,

These groups are isomorphous with D, The presence of the operations I+ R(¢y,m)
introduces a factor (~1)7 in the transformation coefticients which apply to the corresponding
operations R(¢,,n) of D_. The expressions for the symmetry functions may be obtained from
those for D if the factor (~1)i+ ™ in the coefficients of | j,~m) is replaced by (~1)i+m+0,




Groups Dnd (n odd) and Dnh (n even)

These groups are the direct products I x D . Functions that belong to a given
representation of the subgroup D, belong to the corresponding g or u representation of
these groups, depending on whether they have even or odd parity, respectively.

Groups D, 4 (n even) and D, (n odd)

These are isomorphous with the corresponding groups D, . Proceeding in a similar

form as for the groups S, (a even)and C,, (n odd), the following expressions for the
symmetry functions are obtained

VZ PAD Yojm) - \/72: Hajm) + (=1 ™ [o],-m)} 8(m,no + 2np)

(7-23)
VZ P2 ojm) - fé: Hojm) = (<1’ "™ {oj,~m) 1 8(m,na + 2np)
P}Eyy) lejm) = |ojm) 8(m,y + no + 2np)
’
(7-24)
P";)y lojm) = (~DIT™* 2 |oj,-m) 8(m,y+no + 2np)
and, since the representations B and B, for these groups are integral
v PPV laim) - VI Lo jm) + (=)' ™| j,~m)} 8m,n+no+ 20p)
(7-25)

VZ P2 oim) =V L 4 gjm) = (-1} o j,-m) | &m,n+no + 20p)

B. CUBIC GROUPS

In the non-cubic groups, if the principal symmetry axis is chosen as the z-axis, the
only possible values of the Eulerian angle B for the operations of the group are 0 and n,
These rotations transform a given | ¢j m) eigenfunction into either [ojm) or | o j,~m),
multiplied by the appropriate phase factor (Eqs. 7-8 and 7-9). In the case of the cubic groups
other values of B are present. If the three fourfold axes of symmetry of a cube are selected
as axes, the new possible value of 8 is #/2. If one of the three-fold symmetry axes is chosen
as z-axis, B assumes the values r and n—r, where 7 is the tetrahedral angle. The |ojm)




functions transform under these operations into linear combinations of |¢jm*) functions
with the possible values of m’ranging, in general, from —j to j.

The operators P(,y) transform the functions into linear combinations with u* values
. l v . . . .
of the form m” = u’+ np, if the representations are chosen as previously indicated,

The symmetry functions may be obtained by the use of the projection operators,
With our choice of representations it is relatively easy to obtain explicit expressions for
them. We shall illustrate the procedure for the representations A, F |, Ey, and Gy, of the
group O. Our choice of representations is such that the | ’m) functions for j* = 0, 1,

1/2, 3/2, respectively, transform according to the representation matrices, so that

GRIRIY = G IRIW = et dl ) vy (7-26)

where p and p” assume the 2j° + 1 values from j* to —j’,

The operation of the P():) on the functions |gjm) is

iy
P ojm = % Jojm”) (@jm P |ojm)
Ll m wp
= .g_zR Riojm) (yp’|R|yw* (7-27)
d .. . . . , »
= 2 lejn) SGa R jm) (yu'IR [yp)

The coefficients,of the various | ojin") may now be written, by use of Egs. (5-9) and (7-26),
in the form

(oim’ P(i,') oim)= 3 dei(m'—u')a ei(m=p)y d(i:) )d(i), ) 7.28
ojm|p ) " loi wfy o B (B (7-28)

The summations ovetr a and y for every value of g8 may then be perforned separately,
With the sets of Eulerian angles given in Table 6-5 we obtain three types of terms.

Forﬁ=0,a+y=0,rr,-g—,-%,and

d:j—;) (0) = &(u'p) d:),m 0y = 3(m’,m) (7-29)




and the corresponding sum is

8 ) 8(m4m) I elm=pXa+y) o 45,7 4) 8(m’m) 8(m,p + 4p) - (7-30)
a+y

Similarly, for B =n, a~y =0,7, -, - .%

2
d’i,‘u"(n) a0 S d) (m) = (-1 8(m’, - m) (7-31)
8(",=p1) (m ',-m>a§ye'“'““'”‘"‘y’ < 48(n",—p) B(m’-m) 5(m,p +4p) (7-32)
For B = %, we have a,y = 0,7, i;—, - % , but no simple expression for the d:‘, )

sa we will leave the sum in the form

G ) Citm e a) [y im=pdy) G ) ’ gy .
d“-# (42'—) dm,m(—g—) (;_c ) (%c )~ 16d,l " (%—)dm,m(%z’—) 8(m’,u"+4p”) 8(m, p+4p) (7-33)

In general, we may write the matrix elements of the projection operators as a sum
of three terms

< . () . P ’
(o)m le lojm) = 8(m% "+ 4p") 8(m,p + 4p)
"

x %—{cm)aun:m+c<n)(~1)“'“a(nn',~m)+c(="f)d;i,;(5a} (7-34)

For the representations considered, the coefficients c(0), c(r), and c(n/2) are, as we have
seen

c(0) &(pe )

c(n)

(=11 B 5= p) (7-35)
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TABLE 7-1

OPERATORS. GROUP O, (CUBIC AXES)

COEFFICIENTS IN THE EXPRESSION OF THE PROJECTION

710

r n po (@ cln) o( -g—) r p’ g c0) cm  c(n/2)
A, 0 0 1 1 4 . 172 1/2 1 0 2y/2
A, 2 2 1 1 -4 mi-uz 172 0 -1 -2/2
K % 0 0 1 1 -2 . ? /2 -1/2 0 1 2/2
2 0 0 0 23 V2l a2 1 o0 2/2

. ! o 2 o o0 2/3 . 2 s/2 s/2 1 0 =22
2 2 1 1 2 2ls/2 s/2 00 -l 23

1 1 1 0 2 . /2 =52 0 1 -2

F, 1 o 1 0o o -2 > %4/2 /2 1 0 22
-1 1 o 1 2 3/2 3/2 1 0 N3

1 0 0o 0 2 s 172 32 0 0 ~f¢
FFlo o 1 -1 0 32042 32 0 0 N3
a4 0o o o -2~ /2 3/2 0 -1 =2

1 -1 0 2 3/2 1/2 0 0 N3

"F L0 -1 0o 0 -2/2 /2 12 1 0 -2

Ga/p

S S B 2 -1/2 12 0 1 <2

-1 -1 1 0 -2 -3/2 172 0 0 N3

F,{ 2 -1 0 o0 N73 32 -1/2 0 0 /&
1 -1 o0 1 -2 1/2 -1/2 0 -1 V2

4 2 0 o =27 B)a;m a2z 1 o A7

F,{ 2 2 1 - 0 3/2 -2 0 0 6
1 2 o0 0 W2 3/2 -3/2 0 1 vz
41 o0 1 -2 1/2 -3/2 0 0 3

F,l 2 1 0 o0 22 ©2) 0 32 0 o Jo
1 1 1 0 -2 -3/2 -3/2 1 0 J2




These coefficients may be obtained for the remaining representations in a similar
form, Table 7-1 pives their values for all the operators for the group O.

The simplest linear combinations of | jm) functions transforming according to the

different irreducible representations are

Ay 100) p=0

Ay, 1132) =13, -2/ V72 p=2

E []20), 1]22) + |2, -2)I/V2] p=0,.2

Fy (|11), 110y, (1, = 1)) p=1,0,-1

Fy U2, =1), 1122) 12, -D1/V7Z, - 12, D] p=-1,2,1

Ey U4 40 -4 ]

Ey (13 )= V3 |3 =2 0/VE T -VS |3 2) 1 |9 =) 1/VE] p=3,-3

Gy g 45135013 -3, - )] T
(7-36)

Trigonal Axes

In certain problems involving correlations between results for cubic symmetry and
those ohtained when some lower type of symmetry is present it is convenient to refer the
| § m) funtions to a system of axis other than the usual cubic axis. The symmetry functions
refetred to the cubic axes may be transformed Ly the methods of Section 5, but the linear
combinations thus obtained are in general more complicated than the original ones. It is
often preferable to set up the problem from the start in the desired set of axis and obtain
cubic symmetry functions, which are the simplest in the new reference system, so that the
correlation with the lower symmetry functions may also be facilitated.

The Eulerian angles for the operations of the cubic groups may be easily determined
for the lower symmetry reference system, and the expressions for the projection operators
and the symmetry functions are obtained as in the previous case,

A very frequent type of lower symmetry is that of trigonal symmetry, We may con-

veniently choose the trigonal set of axes along the following directions of the elementary
cube
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2= (1,1,1) x'a(—%—,—l,—%—) v = (1,0,~1)
The relative position of the cubic and trigonal scts of axes is illustrated in Fig, 7-1,
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TRIGONAL AXES
FIG. 7 -1

The Euierian angles corresponding to the operations of the octahedral group O
referred to the trigonal axes system are given in Table 7-2, The operations are designated
by the same symbols used for the cubic set of axes, The possible sets of angles may be
summarized as follows

B=0 a+y = 0,2n/3, - 2n/3
B:.” a—-y:O,Zﬂ/a,"zﬂ/a
B a=0,2n/3,-2r/3 (7:37)

ENOTTT Syn=0, 20/3,~2n/3
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TABLE 7-2

GROUP O: Eulerian Angles (Trigonal Axes)

SUBGROUP T COSET T+ &)

R ty,8.@) R.Cj Ba)
E (0,0,0) C4(~xz) (0,7,0)
C,(@) (-3, r= A C4y) (~fsrm, )
C,(y (m,r,0) C,(xz) (#,r-n,0)
Cx) 5. r, 4 cily) (L,r-n, - 4L)
C,y(1,1,1) (42, 0,0) Ci(~yz) (32, 7,0)
Cy(=1,1,~1) F.r- 30 Cjlyz)” F,r-m, 2
Cy(l,=1,-1) (~,r,0 cyl (x) (~Fyr=m 0)
Cy(~1,-1,1) (myr, 4L ) C4(x) (myr=my = 3)
c31a,L,1) (- 42, 0,0 Ci(-xy) (= 3, 7,0)
Cy(-1,1,-1) (-5~ 3 C 5 (xy) (- & yr-m- 30
C} (t,=1,-1) (myr,= 42 ci @) (nyrm, 22
Cyl(-1,-1,1) £,7,0 Cy(2) (F,r=n 0)
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The angle r = 109°28” is the tetrahedral angle and

cos r=~1/3, sinr=2 \/2—/3 (7-38)

The operations of the subgroup T are those with 8 = 0,r, while for the coset T.C]
we have B = n»,r4m,

The irreducible representation matrices for A, F, Ey;, and Gy, in terms of the
Eulerian angles are the same as for the casc of cubic set of axes, and they have been given
in Table 6-4. Also, thc matrices for A,, Ty, and Ea/’ are chosen to be the same as for the
corresponding conjugate representations A |, Fy, and E; for the operations of the subgroup

T, and the negatives for the operations of the coset T.C;, However, the matrices for the
irreducible representation E are now chosen as

1 ; i(a+y)
4 (Bcosp-1e Y 0
2 (7-39)
0 —%— (3 cos B~1) e~ Ha+y)
for the operations of the subgroup T, (B = 0,r), and
1 . ita~y)
0 --2—(3cosﬂ+1)e 4 (7-40)
L3 cos pa ) o) 0

for the operations of the coset T.CJ, (B = m, r—n).
The matrix elements of the projection operators may be written as a sum of four terms
GmL PO |jm) = 34 8(m, e 3p) (', %+ 3p)
x{ c(0) B(m%m) + c(m) (=1)*™ §(m*, —m) (741)

st D d D ()1 () (1 DL ()] .

The representations A, Ey, Fy, and Gy have been chosen so that the | j’m) functions
forj*=0,1/2, 1, and 3/2, respectively, transform according to the corresponding matrices, and
the coefficients c(0), c(x), c*(r), and ¢~(r) are given by
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c(0)=8 (1’ l‘)
e(m) = (<) S =)
ct()=3 402 )

—(r) = 3 (=1)i = (i:)
() =3EDI AN (0

(7-42)

For the representations A,, Eg,,, and F,, the coefficients c(r) and ¢™(r) have opposite sign
from those for A}, K/, and F, as previously indicated. The numerical values of the

coefficients for all the representations are given in Table 7-3.

The simplest linear combinations of |jm) functions transforming according to the

matrices of the irreducible representations chosen are

A, 100)
A,  WZ133)+ V31300 V2 13,-3)1/3

E  UvZi2ly+ 2,205, 1122) -2 12,-D)1/V3 1
Fl [lll),llﬂ),‘l,-l)]

F, =120+ VZ12,-2)%/V3, |20), {-V2]22)~12,-1)}1/+3 ]
Eya U 30 I 3-3))
gy V313 ) =214, - 29173, 1219 2 ~\5 I, =) 1/3]

G3/2 [l%_ %-)’ l%— —%)!l%’_%‘)a l‘%‘;"‘%‘)1

GrourP T

l,l,::O

p=20
p=1, -1
p=1,0,~1
=1,0,-1
ﬂz'é_’—jl-
11
k=7 =7

R

(7-43)

As indicated previously, the matrices of the irreducible representations of the group
0, with the exception of those for E and G;/;, have been chosen so that they are also
irreducible under the subgroup T. Accordingly, the symmetry functions obtained for the

group O are also symmetry functions under T, with the correlation
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TABLE 743

COEFFICIENTS IN THE EXPRESSION OF THE PROJECTION

OPERATORS. GROUP O(Trigonal axes)
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Gtroup O Group T
AL A, —_— A
F, F, - F

E1/2’ Es/p — By

The self-conjugate representations E and G/, of the group O are reducible under T.
The reduction of the corresponding matrices chosen for the group O may be accomplished
by a unitary transformation

't = A ToA (7-44)

where the matrix A is given by Eq. (6-17) or (6-18) for the representations E or G4, re-
spectively.

The corresponding symmetry functions are obtained from those for the group O by the
transformation

U ~T A (7-45)

The simplest linear combinations of |jm) eigenfunctions obtained for these represen-
tations are

E,= 3 [VZ[20)+i22) +i 12, -2))

(7-46)
E, - ,i,_ [VZ120)-i]22) - i ]2, =2)]
L o3l 3y, 13 L
[| ) Y+ i l y )1
G, J2 272 2’2
-l 3 1 I I
Lil=2, 5)+]| 24, ~ )]
> 272 2 2 (7u47)
1 a3 1 3 .2
2[12,2)+l2,2)]
Gy,
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GROUP Ta

The symmetry functions for the irreducible representations of the group T  may be
deduced from those of the group O by simple considerations.

If the |jm) eigenfunctions have even parity, they transform under the operations of T
in the same way as under the operations of O. Since we have chosen the same matrix repre-

sentations for both groups, we also obtain the same linear combinations of |jm) eigenfunctions,

If the |jm) eigenfunctions have odd parity it is sufficient to notice that they transform
under the operations of T, in the same form as the products |A,) |jm) transform under the
corresponding operations of the group O, Consequently, the coefficients of the |jm) eigen-
functions of odd parity in the symmetry functions which belong to a given irreducible repre-
sentation of T4 are the same as for the corresponding |jm) functions which belong to the
conjugate representation of the group O. For the self-conjugate representations, E and G, ,,,
the preceding argument requires that the partner functions be taken in different order and
with diffcrent phases from those for the group O or cven parity functions, If the symmetry
functions are designated by the index u that labels the row of the irreducible representation

of O to which the function |;) belongs, the partners have to be chosen according to the
following scheme

O Grou
roup ) Ty, odd parity
Ty, even parity

E [0), 12) 12), ~|0)

Gyzy 13/2), 11/2), |-1/2), |-3/2) |-[-1/2), |-3/2),13/2), ~|1/2)

This result will appear evident later on, when the coupling coefficients for the point groups
are considered,

In different words, it may be said that the E or G35 symmetry functions i)y |12y eeesy
if theit parity is odd, form basis for a representation of T  which is equivalent to the one they
afford for the group O, but not identical. In order to obtain a set which transforms according
to the latter, they have to be subjected to an appropriate unitaty transformation, which for our
choice of representations leads to the result quoted.

7-18




Grours T, annD 0,

These are direct product groups 1 x T and O » T, Functions that belong to a given
irreducible representation of T (or O) belong to the corresponding g or u representations of

T}, (or 0}), depending on whether they have even or odd parity, respectively.
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8. COUPLING COEFFICIENTS

A. SPHERICAL BASIS

Let us consider two angular momentum operators, J, and J,, with eigenfunctions
[ijm ) and |jm,). The subscripts 1 and 2 refer to two independent spaces (two particles
or systems, orbital and spin coordinates of a particle or system, etc.) and therefore every
component of one operatc: commutes with every component of the other.

The sum
i+, =1 (8-1)
is also an angular momentum operator and its components
Jta*Jaa=la  (a=xy,0r2) (8-2)
satisfy the usual commutation rules.
Jx)=il (8-3)
It is possible therefore to find eigenfunctions |jm) satisfying the eigenvalue equations

J2{jm) = {jm)j(j + 1)

. (8-4)
Jolim) = [jm)m
The (2j, + 1) (2j, + 1) functions of the type
li]mx) ‘izmz) B |jmyjmy) (8-5)

form the basis of the direct product representation (or uncoupled representation). They
are eigenfunctions of the z-component of the total angular momentum, with eigenvalues
m=m +my

U1z + 12igmpligma) = 1imylipmg) (my + my) (8-6)

but are not, in general, eigenfunctions of the total J 2, The product functions may be

classified according to the values of m = m; + my. There is one function, [j1jplisiy,
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]

for m = j; + j5 two functions, |j}jlizi; = 1) and |jj; — Dijgip) form=j, +j, = L.\,
2j, + Lor 2j; + 1 form = [j; = j,};++ .., and finally one for m = - (j; + j,). By simple con-

siderations which we shall not go into, it may be proved that the possible eigenvalues
j of Eq. (8-4) are

i1+j2’j1+ jz-l,----,lil-'jzl

The eigenfunctions |jm) are linear combinations of the above product functions
with my + my =m

ljm) = 2 1j;m,) jmg) Gymgjgmfim) (8-7)
1

The summation runs only over the possible values of one of the indices m; or m,, since
their sum is fixed,

The coefficients (j;mjm,|jm) are the so-called vector-coupling, Clebsch-Gordan,
or Wigner's coefficients, Since the basis functions in both coupled and uncoupled schemes
are assumed orthonormal, the matrices of these coefficients for a given m are unitary.
Moreover, the phase-factors are usually chosen so that the transformation cocfficients are
real, and the matrices are orthogonal. The orthogonality relations are

E (Jymyjpmylim) ( ilm;jzmzli ‘m) = 8(j,j”")
! (8-8)
? (i1m1i2mz‘jm ) ( j1mii2mi lim) = 5("‘1:"\1)

where it is understood that m{ + my = m.

Recursion Relations

There is an important recursion formula which connects three coupling coefficients

with the same j,j,, and j;, and adjacent values of the m’s. It may be obtained by applying
the m-lowering operator

I. = (J3g~i.]3y) = (]1‘+J2x)“i(‘]1y+]2y) (8-9)

to both sides of Eq. (8-7) followed by premultiplication by (j m |(j,m,|. After relabeling
m, the result may be written as

82




Wy~ my) (5 + my + l)lv2 <Jym i gmoligmy> =
(8-10)
l(] 1“"‘1),(5 LM l+1 )l'l/Z(j My o+ 1 j2m2|j 3My+ 1)+1(j2—m2)(i g+ Mo+ D Vz(i1m1j2m7+llj3m3+1)

A similar expression may be obtained by use of the m-raising operator J

(G + m3)iy = my + DIy gmoligms) =
(8-11)
. . V2, L : i Y25 mj j
GgrmPGy ~my+ DE7Gmy = 1jymlj sma=1) + 1y + mp)(ip = my + D7 (j myjymy ~ 1[jzmy = 1)

If the coupling coefficients for given j, j,, j; are written as the elements of a matrix
with columns labelled by the values of m,, and the rows by those of m,, the recursion

relations connect those elements whose relative positions are indicated below

‘o m, +1 m, NN
m, + 1 (my,my + 1)
m, (m;+1,m,) (m,,m,)
m, m;~-1
| .n.mz (my,my) (my~1,m,)
m,~-1 (my,my~1)
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The recursion formulae together with the orthonormality conditions suffice to

determine all the coupling coefficients for given i 1sJ 21} 35 except from a common arbitrary
phase factor,

Thus, for example for m; = j, Eq. (8-10) becomes a one-term recursion formula,
so that the ratios of the coupling coefficients for m, = j, to onc of them may be determined,
This particular element may be obtained by the normalization condition., The phase factor
is chosen to be +1, and all these elements will be positive. Similarly, for my==j, Eq
(8-11) also becomes a one-term recursion formula and all the elements in the last row of
the matrices in the previous scheme may be obtained. Also, they are all positive. The rest

of the elements may then be obtained from those of the first column and the last row by
using either of the recursion relations,

General Expression

The general expression for the coupling coefficients given by Wigner! is the
following:

(j 1M 1) oM yl)ams) = &(m + mm3) (2) 4 + 1)1/2

(=ig+igtiGp=ip+i G +ip=iis+my(jy—my)! v

(8-12)
Gy +ia+is+ DIy +m NG g =m DI 5+ m)I(j,— m)!

IPER PRI .
< 3 (=1)'2" 72 (Gp=mp+)l(jy+js+my-v)!
v

vl(—j1+j2+j3—v)!(j3 +my = V)l(=jy+j=my+ )

The summation index v assumes all integral values that make the arguments of the
factorials non-negative.

The formula is simpler for some particular values of the m’s, A few particular
cases are of interest, and we shall express them in terms of binomial coefficients.

Form; =my=my=0,ifj +j;+j;=o0dd,

(.i10i20|j30) =0 (8-13)
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ifjy+jp+ijy =28 = even,

l1 8~)3 ,

8-14)
(2'g 2)'1 /2 )
2j, 2g~2j4

It should be noticed that the last factor is symmetric in j,j,,j3. In actual calculations it

. _ . . 12
)1+)2+]3+1 ;

is advantageous to denote the smallest j; by j, and the largest by j, in Eq. (8-14).

For '"1=jv
. . . . 2
o) C)
Gyj 1 gmaligms) = ; 2 2 Limlatls J37 M3 (8-15)

j1+j2+i3+1 j1+i2+j3
j3+my

Form, = — j,,
2], ) 1 -j +1:>
. 721 | 1772773
L 2j.+1 g(_ -
G ymyip=iligms) = j. 13% | 1tiatiy \Jymmy (8-16)
»1+12+)3+1S ( 11+12+13
]1+m1
'Form3zi3

2!3 1+ -

) . 12 2 ’

. . . . jy—=m 2j,+1 ( -

Gymyimalisia) = (D' 1 %——-——2—-——-——-$ ) ’2+’ ’1 | (8-17)

jptigrigtl 11*"2'”3
i+ m1
Also, for j3 = j; +jj(m320)

(ja"'m3) (j3+m3) 1/2
jy=my jyg-m
33 (8-18)
2,

Be5

(1ymyigmaliy +iams) =




The 3+j Symbols

There are several different notations in use for the vector-coupling coefficients,
A summary is given by Edmonds.? In addition, "*symnmetrized’’ coefficients have been

introduced, The most widely accepted are the 3. symbols introduced by Wigner. These
are defined as

(jl E i3> COITT (8-19)
= : 11”‘1)2“‘2]3;-"‘3) -19
m)m,my (2i3+ 1)1/2

with my+my+m, =0,

The most obvious advantage is that the existing symmetry relations take the
simplest form in terms of the 3-j symbols.

The symmetry relations between 3-j symbols with the same values of j,,j,, and
j 3 may be stated as follows:

An even permutation of the columns leaves their value unchanged, an odd permutation
. fp+ig+i
introduces the factor (=1)'} " '27 3,

. . jptig+i
A change in sign of all the m’s introduces the factor (-1} 172703

They may be expressed as follows:

jl j2 j3 ( l)il+i2+i5 j2 jl j} i2 j3 il
M, mymg - m,m mgy My my my

and (8-20)

n

If the parameters are all different, these relations connect twelve coefficients,

The orthogonality relations (Eq. 8-8) are slightly modified if expressed in terms
of 3.f coefficients
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s Iy Jg 3 J1 )2 4 _ &G3i3)

mo\m m, m, my m,m, (2j5+1)

‘ iy iy i3 T PI P

.Z (2j3+ 1) = 6("‘1;“"{)
i3 mym,m, mimim3

- ’ ’ -
where m1+ mz+ m3 = m1+ mz+m3 =0

(8-21)

Calculation of 3-f Coefficients

‘The expression for the 3-j coefficients may be written in the following form

l1 )2 )3 5 (j1+m1)!(j1-—ml)!(j2+mz)!(jZ-mz)!(j3+m3)!(j3-m3)! v2
= 8(m,;+m,+my,0) T RTINS T DRI T FO "
mym,my (=114 4 )G =i 4§ MGy + 5 g~ T3 g+l g4 5+ 1!

' L C i
y E(__l)w.l-iz—m3 Jitda=)a\ fl1- )2t J1tla*ls
v v il"“‘l"" jp+m, v

The sum is taken over all integral values of v which make the arguments of the
faciorials non-negative. The same is true for the possible values of j,,j,,j,, which should
satisfy the triangular condition,

(8-22)

The factor in front of the summation is symmetric in the subindices 1, 2, and 3, so
that the summations themselves have the same symmetty properties as the 3+j coefficients,
Also they are sums of products of binomial coefficients and therefore integral numbers,
and satisfy recursion relations much simpler than those for the coupling coefficients.
These are very useful for numerical calculations of the coupling coefficients.
jy dz2 i3
The summations may be denoted by % . The recursion relations that

correspond to Egs. (8-10) and (8-11) are My m, my




iy J2 13 ER PR P

. J1 iz I3

(i34my) 2 #(j rm s 1) (jptmy+]) 3 =0 (823)
my; m,m, m1+1 m, m3-l » mlmz+1m3ﬁl

. \_ J1 12 )3 E TN R E Y lr )2 J3

(13-my X w(j=m + DX (jymmy ) X =0 (8-24)
mymymy ilnl~1 My w, |—1| myom,-1 m3+l

Another very useful recursion formula relates the sigmas with those for adjacent values
of the j's and takes the simple form

iy da is i~ /2 j,-1/2 j, j =172 j,=1/2 4
At = E "'2 (8'25)
m; m,m, m,~1/2 m,+1/2 my m,+1/2 m,~1/2 my

Thus, for example, the 3-matrices for

= Lig= 2053 and ;= 3/2,15=5/2,] =3

are
m1
m, m, 3/2  1/2 =12  -3/2
1 |
"2 5/2 0 -1 2 -1
2 3/2 1 2 -7 @
1 1/2 -4 2 8 -6
0 ~-1/2 6 -8 -2 4
-1 -3/2 -4 @ -2 -1
-2 ~5/2 1 -2 1 0

The second may be calculated from the first by simply taking the difference between two
elements, whose relative positions are indicated in the scheme,
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The expressions for the sigmas for the particular values my = j; andm, = -, are
of interest since all the others in a given matrix may be obtained from them by means of the
recursion relations (8-23,24),

s i1 iz i; =(_1)i1"i2”m3 “i1"i2+i3 (8-26)
j{mymy jo +my

Formy=j,

and for my = = j,

shiviais | _pylriz=™s (Gi=iais (8-27)
my=j,m, Ii=m

Coupling Rules for the Rotation Matrices

The expression for the coupling of angular momentum cigenfunctions thus far considered
is

ljsms) = 2 ligm ) 1igmg) (1ymyiamalizms) (8-28)
1

whete my = m; + m; and the j;'s satisfy the triangular condition jy+ j; > i3 21j) -jal. The
inverse relation is

liymy) 1ipmy) = )2 j3ms) (jymyjom,] j3ms) 8-29)
3

The coefficients may be written as either (jymj,m,|j3m3) or (j3mgljymyjomsy) in virtue of
the orthogonal character of the transformacion,

It should be remembered at this point that |j;m,) and |j,m,) are functions in two in-

dependent spaces while |j;m;) is a function in the product space. Thus, for example, if
liymy) = Y],! (01, )

| jzmz) = ij'ﬂzg (02; ¢’2)




then |i3m3) is a function of 0, ¢, 0, and ¢,, but not a spherical harmonic, although it
transforms under rotations in the same way,

The coupling expressions for spherical harmonics with the same argument may be
obtained from those for the matrix elements of the rotation matrices. If the rotation operator
R(afy) is applied to both sides of Eq. (8-28), we obtain according to Eq. (5-9)

Gy
+ 2, lisn3) Dnsn, (@) o
)

= 2 X 3 |jm{)ljams) D(“ (aﬁ)')D("z) ,@hy) (1myjamyljzms)

If we premultiply scalarly by a particular (jymj| only one term on the left hand side
remains, while on the right hand side the only non-vanishing tetrms are those for which
mi{+ mj = mj, and we obtain

( ) Gy (G3)
’3 (aBy)-— E E (hml)2mz|13“\3)(11"‘1)2‘“2“3"‘3) Dmlm (aﬂ}')szm (aBy)
nymy

(8-31)
Similarly, from Eq. (8-29) the inverse relation may be derived

( ) )
“ (/3 )D, ]2 ('1.3}')= 2 ()1m1]2m2h3m \()1"‘1’2"‘2‘)3"‘3)Dm;m (aBy)

(8-32)

where, as indicated, m;=m,+m, and m{=m{+mj.
’ » 3 1 2 3 1 2

It is more convenient to use in place of Eq,(8-31) another expression involving only
one summation, This may be obtained from Eq (8¢30) on premultiplication by a particular

product function (j,m{| (j,m;| and taking into account the orthonormal properties of these
basis functions, One obtains

. Gy G2)
(1m312m31i5m5)Dp (0 = X G ymajmaljymyD, (467) D (56
(8-33)

The coupling rules for spherical harmonics with the same argument may now be ob-

tained by setti '6 mi=mj =mj = 0 in Eqs. (8-32) and (8-33), and making use of the relation
between the D, (¢f¢) and the Yg (6,¢) given by Eq. (5-30). The results are

8-10




H’,lmlfﬁzmzl tams) Y ml(ﬁ,é) sz (0,)

i 4@+ 1) |4
S TR — [" L

(4,02,0[ 40 [C 4+ D@ 41| m
(8-34)

and

P 0.9y Y P A0 4y @4, u)(zzt2+1>'|/](4,0“ O e L) Y3 (0
£, (0,h)Yg X0 —E} 4”(2,63‘(1)-] 2014300 (£ym Lom,|dym, {3( P)

(8-35)

Matrix Elements of Spherical Harmonics

From these coupling relations one may now deduce the expressions for the integral of the
product of three rotation matrices or three spherical harmonics. If Eq. (8-32) is premultiplied by
a particular Dg;gn and intcgrated over the range of the three Eulerian angles we obtain, by
considering the orthogonality properties

fD(JB) D(Jz) D(h) dR

mimy “mymy mimg
(836)

G3) (i) (iy) 8n? .
—( & P ’gzmlem,ml (z—i;:l)—<1xmxlzmzI);mﬁ(nmnzmzlJsms)

Similarly, the integral of the product of three spherical harmonics is

f sin 0d 6 f do Y{a 0,)* Y{2(0,¢) Yq (0,45)
¢

= (YM3 Y™

837)
; Y. [(2:{;1 +1)24, + 1) ]‘/z (410 £, 01250 £ ymy £, m,| 4ym;)
3

This may be written in terms of the 3-j symbols,

1
(Y2l Y2yt = 0™ [<2%1+1><2%z+1>(2’€3+1>] 4 28,4\ (41 L2 15\ (838)
3 &2 I 417 0 0 0 n\l m2 —ms
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This expression is very important for the determination of the matrix elements of many
operators of interest in physical problems. For example, the crystal field potential acting on
one electron may be expanded as a series of spherical harmonics. The matrix elements of
the potential between electronic states with definite angular momentum may be expressed
in terms of the 3-j coefficients, The matrix elements for other sets of basis functions, such
as the symmetry functions corresponding to the actual symmetry point group of the crystal,
may then be obtained by the appropriate transformation. The transformations between the two
sets of basis functions.have been considered already in Section 7.

Since the 3-j coefficients ate necessary for this, as well as for other purposes, we
have written programs for their calculation with a 650 IBM electronic computer.

Two programs are available. One is especially adequate for the computation of tables
of 3-j coefficients, In this program we have made use of the recursion formulae for the
sigmas of Eqs. (8-23, 24) and this contributes considerably to its speed.

Another program has been written as a subroutine to be used in computations of a

wider scope where values of 3-j coefficients may be required in the course of the calculations.

All the values are computed in exact form, and given in terms of products of prime
numbers or, alternately, as ratios of integers. Furthet details of the calculations are given
immediately preceeding the tables.

B. MORE GENERAL TREATMENT OF COUPLING COEFFICIENTS

When considering the coupling of angular momenta, the (j;m,j,m;|jm) have been de-
fined simply as the coefficients in those linear combinations of praduct functions

fim) = 2 {jimp) ljamy) (jymyjm,lim) (8-39)
my

which are also eigenfunctions of the total J2 and J .+ In group-theoretical language, the
coupling coefficients are the elements of the matrix that reduces the direct product of the

irreducible representations 1"il and T'; of the two-dimensional unitary group into its
. 2
irreducible components, r.

We shall now consider this problem more generally, for any group whose irreducible
matrix representations are known. The linear combinations of product functions |ypy) |y pug)
that transform according to the different irreducible representations of the group in question
may be written in the form
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]

layp) »:’l ﬁllzlyllll) lyqitq) ()’1!11)’2!‘2“1}'#) (8-40)
The inverse transformation is
by ) lyany) = a;.:ﬂ layp) Cayply #1790 2) (8-41)

The extra index « is necessaty whenever there is more than one linear combination of
product functions that transform according to the irreducible representation I's The number

of times that the product representation I'; » I'; contains the irreducible representation I",
is, according to Eq. (4-27),*

x4

343

M= NG X (8-42)
The functions |ayp) labelled by different values of a may be chosen to be orthomormal,

and the coupling cocfficients may be considered as the elements of a unitary matrix, so that

(ayply iy ana) = gy o glayp)* (8+43)

The set of product functions |y p,) |y,t;) transform under an operation R of the group
according to the direct product matrix D(R) = I" |(R) x I',(R). The “‘coupled” functions |ayp)
transform according to a matrix DAR) which is in reduced form, that is, it has along its main
diagonal the matrices I'(R) of the irreducible representations contained in the direct product

' x I';, and zeros elsewhere. The representation matrices are related by a unitary trans-
formation of the form of Eq, (2-16)

D*(R)=A'D(R) A (8-44)

The coupling coefficients are the elements of A and may be determined by solving the
above equations, This is the method outlined by Koster’

-
1f we write By = Iy Fi |T})s these “'coetficients of composition®’ of the group are non-negative integers
satisfying symmetty relations of the form

(Fi r, l rk) = (Fi' F,‘ I rk.) = (I“l I‘i Ir‘k) = (l“il“k‘ l Fl‘)
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Explicit expressions for the coupling coefficicnts may be obtained in a more straight
forward fashion by use of the projection operators, according to the methods of Section 4.
We shall consider first the case when the representation 1" is contained only once in the

direct product I'; x I',, We can then write the operator I;"Z”L) of Bq. (4=14) in the form

1
PO =l ol = 5 2 Gnt IRy (845)

In genetal, when operating on a product function ly e y) lyan,) it generates a linear
combination which belongs to the p’th row of the irreducible representation I'

() .
IL}; by lyary) = v D G ly gy ang) (8-46)
provided (yp |y pyyamy) = (ygpuyyang lyd* 7 0. 1f this does not vanish, we can write

, d,, . ,
v ™) Grypyyang lym* - —,f— “E(yu IRIpd* R yqpey) lygny) =

(8-47)

d ’ ’ 14 4
= —“Lu% i) lyans) 2 e i IRl 1) Gaed | Rlyans) (v’ Rlyp)*
11y

Comparison with Eq. (8-40) leads to the explicit expression for the coupling coefficients
in terms of the matrix elements of the irreducible representations

(yuf yous lyn*) =

(8-48)
dY

h (}'1# 172!‘2‘)’/‘ »

E (i1 IRy ) rgns IR yaps ) (yp IR |yp)*

By letting p{, p; , and ” assume all possible values, while keeping ¢y, j15, and p fixed,
all the coupling coefficients are obtained with the proper phase relations, A common phase
factor is still, of coutse, arbitrary, In the particular case of the two-dimensional unitary
group, the expression for the coupling coefficients takes the form

(jym{jmslim*) =
(8-49)

21 +1

If{(i1m{|Rli1"’1)(izm£|R|i2m2)(im'IRIi"‘)"'dR
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which is equivalent to Eq. (17.22) of Wigner!. If the explicit expressions for the elements of
the rotation matrices, Eqs. (5-9) and (5-10), are introduced in Eq. (8-49) one arrives at the
general expression for the coupling coefficients which was given without proof in Section 8,
Eq. (8-12). As already mentioned, the above expression defines the coupling coefficients
_aside from an arbitrary phase factor, el®, common to all the (jymqj,mylim) for given jy, i,
and all possible values of my, m,, m, This is usually chosen so that the coupling coefficients

for m, = j, are real and positive. Since the integral on the right hand side of Eq. (8-49) is a
real number, this choice makes all the coupling coefficients real.

In general, a reducible representation may contain a given irreducible representation

I" more than once. We shall therefore express the operator }1(2;3 symbollically in the general
form

(
lﬂ) = = layn? (ayul (8=50)

where the index a assumes n,, different values, corresponding to the number of times that
the irreducible representation y is contained in the reducible representation under consid-
eration, ny being given by Eq. (4-27).

If 1712;‘ operates on a product function, we now have, instead of Eq. (8-47),

P’E):; lyae) lyans) = E layr’) Cayp ly gpyyans)
{(8-51)

d rd » » »
= 5% 2 lyin]) lyaed) f(ym IRlyreq) (rars [Rlyomg) (yp " IRlyu)*
Kty

The (known) sum over the group operations on the right hand side is not in this case pro-
portional to one of the coupling coefficients, but rather a linear combination of n,, of these,
since Eq. (8-51) premultiplied by a particular product function (y uflyus| gives

s o)
Ganiyars | BY Dyimyans) =

d
= 75 2 aeIRlygrg) (raug Ry iRy (8-52)

= = tapivangleyr?) (rapyrang laym)®

where use has been made of Eq. (8-43).
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Although no simple explicit expression results, there is no difficulty in obtaining the
coupling coefficients, As indicated in Section 4, we may operate with P’E}:# on n,, different
product functions in the form given by Eq. (8-51). If the resulting functions are not orthogonal,
an orthonormal set may be censtructed from them by any of the usual ptocedures, or by the
methods of Scction 4, These may be taken as the n, desired |ayp’) functions, and the co-
efficients of the |y p{) ly,uy) are the coupling coefficients (y u{y,u5 |layp ). There is,
consequently, considerable arbitrariness in the choice of the |ayp’) functions, since any
other set of o, functions [Byn ") obtained from the |ayn’) by a unitary transformation is

equally acceptable, The corresponding coupling coefficients are telated to the previous
ones by

(yyeiyaps \Bre”) = 3 (yuiyopslaye”) (alf) (8-53)

aQ

where the coefficients (a|B) are the elements of a unitary matrix of order n,,. This arbitrariness

is the usual one encountered whenever there is a degeneracy; in the ptesent case the n

Y
functions |ayp) all belong to the same eigenvalue (unity) of the psth tow projection operator

HE

There are several reasons that make it desirable to introduce further conditions to
temove the arbitrariness in the choice of the |ayp). The simplest reason concerns the iden=
tification of the ny different functions, For a completely arbitrary choice, a represents only
a running index, and conveys no information about |ayp). In order to specify this function it
is then necessary to list all the coupling coefficients (y u y, u;laypn) of Eq. (8-40). A better
way of identifying a given |ay;) is by means of a generating function, that is, in the present
case, a certain linear combination of the original product functions such that one of the P‘K
operating on it generates |ayp ). As indicated in Section 4, the generating function has to
be orthogonal to the ny-l remaining |ayA) functions, and can always be chosen so that it

contains at most fiy non-vanishing coefficients.

What is most desirable, in principle, is to arrive at a set of layp) which are eigen-
functions of some operator (or set of operators) in such a way that every value of a cor-
responds to a different eigenvalue. Altematively, it is usually possible to find some symmetry
group, different from the one under consideration, such that the coupled functions may be
classified according to different irreducible representations of that group.

The preceding remarks are perhaps best illustrated by a simple example, Let us con-
sider the reduction of the direct product representation F; x G/, of the cubic double group 0
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FixGyy=Eyy+Egyy+ 26y, (8-54)

which contains twice the Gy/, irreducible representation, As basis functions for the F
reptesentation we may take the angular momentum eigenfunctions |j m,) for j; = 1, and

similarly for G/, the functions |j,m,) for j, = 3/2, The coupled functions may be made eigen-
functions of the total J2 = (J; + J,)? thus obtaining two sets of Gy, functions, one corre-

sponding to j = 3/2, the other to j = 5/2.This is also equivalent to classifying the coupled
functions according to the irreducible representations of the rotation group R 5.

Similarly, the direct product of the representation F of the tetrahedral group T with
itself

IF'xF =A+E+2F (8+55)

contains the representation F twices T is a subgroup of O and we can choose sets of functions

of type F, in O as basis functions F for the group T. The corresponding direct product in O is
Fl)(Fl:Ax+E+F1+F2 (8'56)

so that the two sets of F coupled functions of the group T can be classified, one as F |,
the other as F,, under O,

ORTHOGONALITY RELATIONS

These are simply an expression of the unitary nature of the transformation (8-40, 41)

a)%ﬂ (ypiyyamalayn) Gayp lypivars)

o a%# (Yip1yaig layw) Gy pfyons layp)* = 8 Gupppni) 8{ug,u3) (8+57)

2 Alayplypryans) (yipyyarg lay 1)
KiH,

) V'E}: (yipqyapg layp)* (yypryapg la’y 1) = 8(a,a”) 8ly,y ) 8(p,pn ") (8-58)
142
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COUPLING RULES FOR THE {(yp’|R lyp)

The coupling rules for the elements of the representation matrices may be obtained by
the same arguments used in the case of the rotation matrices, Egs. (8+30) to (8-33). In the
general case we have

()’3#5 |R|)’3#3) =

< 2 3 lagyyndlyipfraed) Guayanalesysny) G Rlysey) (apdiRlyaes)

R1slty Hpk3
(8~59)
(yn{lRly1ny) (yaps [Rlyamy)
= T %, (ypmlypuslagysns) Gagysuslyikyang) (vapilRlyams)
a3Ys3 Kaifig
(8-60)

As in the previous formulae, the coefficients (a3y3u3|y1uly2y2) may be replaced by

(}’1!‘1}‘2#‘2\“3)'#5) *e
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9. COUPLING COEFFICIENTS FOR THE POINT GROUPS

The coupling coefficients for the point gronps are easily obtained from the results of
the previous Section.

If only one-dimensional representations are involved, the coupling coefficients may be
taken to be unity if I'y x I, = I, and zero otherwise, They are thus identical with the LITRY
of Eq. (8-42) and are easily obtained from the rules for representation multiplication.

For the degenerate representations, they may be obtained from Eqs. (8-48) or (8-52)
and the irreducible representation matrices. The coupling coefficients given in this Section
correspond to the choice of representation mattices given in Section 6, Tables 6-3 and 6-4.

GROUPS €, €\, AND $,,

The representations of the groups C_, C ,, and S, are all one-dimensional, and the
coupling coefficients may be chosen to be one or zero,

Thus, for example, for the C groups, the multiplication rule is
r, xr, =r (9-1)
whete
By=py+pytn (9-2)
the plus or iminus sign being chosen so that
-1/2 < py & n/2 (9-3)
Accordingly, the coupling coefficients are of the form
(yimryapalyska) = 5Cpgs py +py £ 0) (9-4)

For the groups C_, (g even) and S, (0 odd) we have, in addition, the multiplication
rule
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gxg=uxu=g

(9+5)
gxu=u
and the coupling coefficients are

(dlylul, 02)/2#2\0‘3)/3#3) = 5_([13, f‘l + P2 1 n) 85 (03, 0‘1 1 ﬂ'z) (9'6)

where, as indicated previously, o = 1 for functions of even parity, and « = O for those of odd
parity.

For the groups C_y (n odd) and 8, (n even), isomorphous with C,_, the results for C,
apply, with g replaced by 2n.

GROUPS Dn, Cnv {n even)

The coupling coefficients associated with only one-dimensional representations may
be taken as unity or zero. The multiplication rules for these are symbolized as follows

AXA=BXB-'=A
AxB=B 8-7)

(1) x (1) = (2) x 2) = (1)
W) x @) = 2) -8

We shall label the basis functions |yu) for the two-dimensional tepresentations E_ as

ly) or |=y), for brevity. The product of these and one-dimensional representations are always
of the form

AxE, =E, BxE,=E;) _, (9-9)

The coupling coefficients are given as follows
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TABLE 9-1

A x Ey Ey A, x Ey Ey
ly) f~y) l¥) =)
1A |y) 1 0 1A Iy) 1 0
1A |- 0 1 1A5) |-y 0 -1
By xE, Enz -y B, x E, Eyz
199 1= 8-+ 1 5--v) 1= 2-+y)
1By 1) 0 1 By 1y) 0 1
IBy) f~y) D 0 IBy) |=y) | ~(=1)? 0

In these tables, as well as in those to follow later, the coupling coefficient

(y1#1y ¥21ylyn) appears in the row labelled by |uy) |1,) and the column labelled by |p).

In general, the product of two degenerate representations is of the form

E, xE, =E +

Y1 Y2 Y1172 (9-10)

EYl"Yz
However, if y| + y, = n/2 we have instead of Ey1 +ys two one-dimensional represen-

tations, By and B,. Similarly, if y; -y, = 0, the place of E, -y is taken by the two-one

dimensional representations A and A,. The coupling coefficients for the different possible

values of y, + y, and y; - y, (assuming y, > y,) are given in Table 9-2,



TABLE 9-2

O<y +y,<n/2 Y1+ ¥y,=0/2n/2<yy+y,<n

E)'IXEVZ Eh* Y2 By + By E"“Yrvz

ly1+72) l=y=v2)| 1By IBy) Jin=yi=y2) |-n+yy+y,)

Ay +y,)

ly) lyy) 1 0 Viiz iz | o (-1) Y2
|"Y1) |-y 4) 0 1 Virz - /172 1 0

0<yj-ya<n/2 Y1=v2=0
E}'IXE)'Z Ey1~y2 A1+A2

lyl")'z) l“)’l*)’z) |A1) lAg)
l)’l) |"}’2)_ 1 0 \/1—/2 V1/2

2 2 2

=) lya) 0 S RA (S VRV, IS VRAVN 2

GROUPS D AND C | (n odd)

The same results as for g even are valid, except when the complex representations
B, and B, are involved. In particular, it should be noticed that, unlike the case of n even,

one now has

leBlﬁB2XB2=A2
Byx By = A,

(9-11)

In addition, the coupling coefficients involving B, or B, and the doubly degenerate

representations cannot be chosen to be all real. The coupling coefficients which differ from

those for n even are

(B;B,1A,) = (B,B,|A,) = (B,B,lA,) = 1
(ByBy|A ) = (B,B,|A}) = (B,B,]A,) =0

and those in the following Table 9-3.

(9-12)




TABLE 9-3

: F
B)XEY E%—y BZXE)’ %_y
- =n I=3-+9) 5= |- -+
1B 1y 0 1 LEPYRY 0 ‘
1By) [~y i1 0 IBy) |-y |- 0
Yi+yy=n/2
By, > By, By + B,
1By |B5)
by 1y Vi7z Nivel
=y ) =v,) inN? -2

GROUPS Dy (n even) AND D4 (n odd)

The same results as for D apply, with the additional rule

gXgXuxus=g

GROUPS D,y (n odd) AND D4 (n even)

xgeu (9-13)

The same results as for D, ( o even) are valid, with 2n in place of n.

GroUPQ

If the clements of the representation matrices given in Table 6-4 are introduced in
Eq. (8-48) and the summations over the values of the angles a and y are performed, one can

easily arrive at an expression for the coupling coefficients which, for the choice of functions
referred to the cubic set of axes, takes the form




d 1
oy iy playe’) = _(f" Gk 1y a0z laym)
1717282

x [C(O)F;FIC(O)u5“2C(O)Fv“ + c(”)f‘;l‘1C(”)F‘5l‘z‘:(")l"f‘— (9-14)

1
+ 1z /Dy eln/Dys, C(n/Z)#ﬂ,L]
where the coefficients c(8) are those which appear in Eqs, (7-34, 35) and are given in
Table 7-1.

For the choice of representation matrices made when the basis functions are referred
to the trigonal set of axes (see also Egs. (7-39, 40)) a similar expression is obtzined

d
(yypiyons layp) = 24 ——L
11722 8 (yir1¥aH, layp)

x [C(O)ﬂfﬂlc(o)ﬂi#z c(0), 4y + ey elmys, clmy sy (9-15)

L - #1+Fz‘# + I3 + ’ + ’ - ’ = ’ a
* 9 (-=1) ( ¢ (r)lllﬂlc (')Ilzllzc (r)!»‘ [ te (r)l‘ﬂ‘lc (r)l‘zllzc (r)!"l‘)]'

where the coefficients c(B) are those of Eqs. (7-41, 42) and are given in Table 7-3.

The coupling coefficients for the functions referred to the cubic set of axes have been
reproduced in the Tables. In the products

FixGy/a =Ey/y +Eg/p +2Gy,
FaxGyya=Eyy + Es/p + 26y, ' (5-16)

63/2"03/2=A1 + AZ + E + 2F1 + 2F2

some irreducible representations are contained twice and therefore Eqs, (9-14) and (9-15) re-
quire a slight modification, according to Eq. (8-52),

As indicated in the previous Section, the choice of the two sets of basis functions of
the same symmetry in the product may be done according to different criteria. if we choose
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as basis functions [or the original Ty the |jm) functions for j =1, and for the G5, the |jm)
functions for j = 3/2, we can choose linear combinations of product functions which are
eigenfunctions of the total J2, so that

Fi(y=1xGyplip=3/2)=

(9-17)
=Ey;)(J =1/2) + Egp3(] = 5/2) + G35 (] = 3/2) + G35 (] = 5/2)

and similarly
GilZ(il = 3/2) X G;/z(iz‘-‘ 3/2) =

=A(J=0)+A(J=3)+E(=2)+Fy(J=1)+F(J =3)+ Fy(] = 2) + Fy(] =3).
(9-18)

The corresponding coupling coefficients are given for convenience in Table 9-4,

TABLE 9-4
F1xGy/p Ey/2 Ga/a Es/z l Gs3/2
12) -1/ 13/2  [1R2) |-12) |-3/2) |15/2) |5/ 13/2) |1/2) |-1/2) |3/2)
D |3/2) 0 0 0 0 0 o Ji/s o 0 0 0 V578
|1 11/2) 0 0 VI’5 o0 0 0 0 ~I7Z 7710 o 0 0
|y 172y | V76 o 0 V813 o 0 0 0 0 V3710 0 0
|1 |-3/2) 0 vizz o 0 vIls o0 0 0 0 0 ~JI7I0 o
[0) 13/2) 0 0 35 o 0 0 0 173 +/T/15 o 0 0
10} |1/2) -J1/3 0 0 1715 0 0 0 ] 0 V375 0 0
|0y |=1/2) 0 =173 o 0 V715 0 0 0 0 0 =375 o
|0y |-3/2) 0 0 0 0 0 V35 173 0 0 0 0 VI7T5
|-1)1372) ViZz o 0 ~JVI5 o 0 0 0 0 VI7To ¢ 0
|~1) |1/2) 0 V176 0 0 =F15 o 0 0 0 0 =370 o0
[~1) |-1/2) 0 0 0 0 0 775 <177 © 0 0 0 Vvi7io
[~1) [~3/2) 0 0 0 0 0 0 0 vI78 -/576 0 0 0
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The coupling coefficients chosen there for I'; x G/, are related to those for F| x G, 4,
by simple symmetry relations.

This choice of coupling coefficients is not the one we have preferred in the final

Tables. In these, the product functions in G,/ x G5/, have been classified as symmetric
or antisymmetric with respect to a simple linear transformation of the original functions
¥y <o A (9-19)
where the matrix A is
0 0 1 0
A 0o 0 0 -1 )
- 1 0o o o0 (9-20)
0 1 o0 Q/

(This may be recognized as the matrix of coupling coefficients for the product A ,xG; /= Gyzy)
The product functions of G/, % Gy/, which are symmetric under the transformation belong to
Ay Ay, Fy, and F, while the antisymmetric belong to E, F, and F 5. The F; or F, symmetric
functions are designated in the tables as Fl(‘) and F2(+), while the antisymmetric as Fl(")

and Fz(') . It may also be noticed that this choice leads to simpler results for the coupling
coefficients,

The coupling coefficients for the G;/, functions in the products Fy x G s, and
F, x Gy, have been then obtained from the previous ones in such a way that they satisfy the simplest
symmetry relations, We shall consider this point in more detail in the section dealing with the
symmetrized coupling coefficients.

The relation between the Fl(+) or Fz(") and those of Eq. (9-18) is

F,( [FI(] =1) + 2F (] = 3) ] /5

[2F1(J =1 - F1(1=3)} /5

i

(921)

H]

F )

Similarly the G§72) and 65(72) of the product F x G, , are related to those in Eq. (9-17) in
the form

63/2(-‘) =[G3/2 (J=3/2) + 203/2(] = 5/2)] 3

_ (9-22)
G}ﬂ(») - [:203/2(] =3/2) - Gy3p(J = 5/2)] NS
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GROUP T

The coupling coefficients for T may be obtained from those for the group O with
some slight modifications, With our choice of representations the coupling coefficients

involving A, F, and E /, are the same as those for the group O, taking into account the
correlation

Ay Ay A
Fi,Fy —F (9-23)
E /3 EsppmEypy

The choice of representation matrices for E and G/, of the group O is such that the

basis functions for E, Ey, G,, and Gy, of the group T are obtained from them by a trans-
formation, Eq. (7-45)
V. =W, A (9-24)

The matrix C.. whose elements are the coupling coefficients (71"1)’2!‘2|“73"3)T for the

group T is obtained from the corresponding matrix C(y for the group O by means of the
transformation

Cr= [A“) x Am] 'CoA® (9-25)

where the matrices A(Y) for the E and G4/, representations are those given in Eqs. (6-17)
and (6-18), For the remaining representations the AY) are unit matrices.

It should be remarked that the coupling coefficients involving E , E,, G, and Gy,
cannot be chosen to be all real, as in the previous case of the D groups with n odd. This
is due to the fact that the representations in question have complex characters or, in other
words, arenot equivalent to their complex conjugate representations,

GROUP T4

Since the representation matrices have been chosen to be identical with those for the
group O, the coupling coefficients are also the same for both groups,

GroupPs T, AND O,

These are direct product groups, and the coupling coefficients are obtained from those
for T and O taking into account the additional parity multiplication rule.
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10. IRREDUCIBLE SPHERICAL TENSORS

When considering atomic wave functions it is often preferable to operate in spherical
rather than cartesian coordinates. The spherical basis functions appear in a natural way as

basis functions of a representation where J and J_are diagonal. This is intimately related
to their *ransformation properties under rotations of the coordinate system, Thus, for

example, spherical harmonics with different j values are basis for different irreducible
representations of the rotation group in three dimensions, R 3. Similarly, different m values
correspond to different irreducible representations of the group of rotations about the z-axis.

Cartesian coordinates (or momenta) and their products afford bases for representations
which are, in general, reducible. For example, although x, y, and z themselves are basis of

an irreducible representation, (j = 1), only the appropriate linear combinations

-+ i)/ VT = Gn/3) ey,
z = (4n/3)4 £ YO, (10-1)
(x -iy) /V2Z = (4n/3)" ¢ Yy

diagonalize J ,.
The six products x2, y2, 22, xy, xz, and yz afford a reducible representation. There
is a linear combination

x4 y2i22= 2 (10-2)

which is invariant under rotations, as Yg, while five other appropriate linear combinations
will transform as the second order spherical harmonics, YJ. Similarly, we may consider
the nine products of the cartesian components of two vectors. The linear combination

v

Xyxp + ¥ ¥a + 2123 = (Fy + 1) (10-3)

is a scalar and remains invariant under rotations. The three linear combinations
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X1¥2~Yi¥2
Y123 ~21Y, {10-4)
ZIX2 - xlzz

afford a basis for the j = 1 representation, just as Y] . The five remaining (independent)
linear combinations afford a basis for the j = 2 representation, as the YJ spherical harmonics.

When we come to consider the quantum mechanical operators associated with functions
of the coordinates or momenta the preceeding considerations about their transformation
properties are also valid. In addition, we shall find that the matrices of operators in
spherical basis are also simpler than in cartesian., A know example is that of the angular
momentum operators themselves, For p-states, (j = 1), the matrices for J,, J,, and J, are

0 1/VZ 0 0 -i/NZ2 o0 1
Je= VIVZ 0 AWNT) 5 T,= LiVZ 0 4NVI) 5 J,- 0
0 1IN O 0 i/VZ 0 -1

(10-5)

The corresponding angular momentum operators in the spherical system are

Jl="(]g+i]y)/‘[2-; ]o=.]z; J-l':(]x'—ijy)/\/?- (10.6)

and the matrices for p-states

0 Il 0 o 0 0 0
Ji= 0 0 -1 ; Jo={0 0 0] Ja = 1 0 0 (10-7)
0 0 0 0 -1 1 0

Similarly, we have seen (Eq. 8-37) that the only non-vanishing matrix elements of the spherical
hamonics are of the form

(Lm| YM | 4, m=M)

so that there are only elements along a line parallel to the main diagonal.
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1t should be noticed that the matrices of the operators in the spherical basis are not
Hetmitian. While for a Hermitian operator ( H = H') such as J,, we have

Em 4 m)='m’| ], 1 dm)* (10-8)
for an *'irreducible tensor operator” in the spherical basis, such as Y% , we have
(Am) YM] Am?) = (=DM (£m*) Y;M | Lm)* (10-9)
or, more generally

(TM)' = (=]M ;M (10-10)

(This merely reflects the fact that the corresponding functions are not real, Compare
(10-10) with the definition (Yl“f)" = (~1)M YI':M adopted for the spherical harmonics),

With the preceeding considerations in mind we may now define an "'irteducible tensor
operator’’ of rank L as a set of 2L + 1 functions (operators) which transform under rotations
of the coordinate axes in the same way as the spherical harmonics of order L:

RTY R = % Dfay(apn) T (10-11)

(Remember that if the basis functions ¢ are changed by the transformation R in the form
¥ - Ry, an operator or matrix is changed in the form T - RTR"!, See Eq. 3-7).

Alternatively, it may be defined by the condition that the set of operators Tlhf satisfy
the commutation relations

(o ti],, TH I LLTMYL £ M+ DI T ED

[ THI-MTY (10-12)

Both definitions may be shown to be equivalent, The second is the one given by Racah®.
Since the proof is relatively simple we shall sketch it briefly.
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We shall first remember the connection between the rotation operators and the
angular momentum operators, Eq. (5-4),

R () =c®® D (10-13)

# is the angle of rotation about the axis defined by the unit vector n, and (n . J) is the
component of the angular momentum along that axis. This expression is often taken as
the definition of the angular momentum operators, One should also remember that the

D} ay(¢) are nothing else than the matrix elements of R in the basis afforded by the spherical
harmonics Yi‘ .

DYag = (LM” | R [LM) = (LM] % ) | Ly (10-14)
For an infinitesimal rotation we may expand R in the form

R-e®™ D1 it b+ (10-15)

Eq. (10-14) now takes the form

Dyag =(LM’| 1+ ig(n. )| LM (10-16)
« 8(MIM) + igp (LM*] (n + J) | LM)

We can now substitute the above results in (10-11) keeping terms only up to the fisst order

in @,

For the left hand side of (10-11) we obtain

RTMRI=(U+ipgINTY (0 ~ig (0. d)) (10-17)

=T +ig (. DT - TH (0.

For the right hand side,

3, D TH S 1M ig S,M (-0 [LM) TH (10-18)
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and finally

Lo d, TH 1= 2,1 M- ) [ L) (10-19)

We only have to substitute on the right hand side the values of the matrix elements of the
components of the angular momentum, The non-vanishing elements are

°

(LMl ]+ 0], |LM) = [(L-M)(L+M+1)]l/;

1 (10-20)
(L,M=1| ] ~i], |LM) = [(L+M)(L-M+1)}

(LM[],|LM) = M

Substitution in (10-19) gives the commutation relations (10-12),

ADDITION AND MULTIPLICATION OF TENSORS
Two tensors of the same rank may be added to give another tensor of the same rank,

Also, two irreducible spherical tensors T; and T _ may be '‘coupled’ to give
other irreducible tensors with ranks L such that |, —L,|<L <L+ L,

The addition and multiplication of tensors will be treated in some more detail in the
next Section,

10-5




Matrix Elements of Spherical Tensors

v

We consider now some general properties of tensor operators in the spherical basis.,

We assume that the basis functions |jm) are cigenfunctions of (the total) J? and ], of the
systems

In the commutation relation (10-12,b)

I, -1dy, -MTH (10-21)
we can multiply on the left by (jm|, and on the right by |j'm?. We obtain
mGmlTH 1§09 = m Gl T i m) = MGm] T4 | m”) (1022)
or
(m=-m" =M GmTM|i’m*) =0,

so that the only non-vanishing elements will be those for which m = M+m*, Within a given
j,j “submatrix they are all along a parallel to the main diagonal jm, jm, just as in the case
of the matrix elements of the spherical harmonics or J,, g, J.1.

If the same procedure is applied to the other commutation relations (10-12,a)

(g ti],, TN 1= 1 (LTM) (L s My THED (10:23)

one obtains recurrence relations between matrix elements with the same L,j, j“and adjacent
M, m, and m”. These may be written as

(L, M+ 1) Gm TM | §m*) = G, ma1) (G, med T |5 m )= £G4 m ) Gm [T+ i m™-1)  (1024)

Ly M) Gm| TM |5 m*) = £G, m) Gm=1] T m ) £G4 miDGmITM1]j %4 1) (10-25)

where

f(j, m) = v (j+m) (j~m+1) (10-26)
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It is important to notice that if one matrix element (ijTl"" 11 'm7#0 is known, all the
elements for allowed values of m, m”, and M and the same i, j*, L, can be determined by
means of the recursion relations. Also important is the fact that the Clebsch-Gordan
coefficients (j'm’LM| jm) satisfy the same recursion formulac (See (8-10,11) as the

(jmlTl':' |j’m*, and both vanish unless M + m’= m. From tkis, and the linear nature of the
recursion relation follows the

Wigner — Eckart Theorem,

This states that the matrix elements (jm[Tﬁ |j“m”) are proportional to the Clebsch-
Gordan coefficients

(iml-rﬁl li'm’)": (]”TLH,')

(j’m’LM |jm). (1027)
(2§ + 1)

the ratio being independent of the projection quantum numbers m, m*, and M. It is only
determined by the physical properties of the tensor operator and the system. The geo-
metrical properties, which depend on the orientation of the reference frame, are entirely
contained in the Clebsch-Gordan coefficient.

G TLI§*) is calledthe reduced matrix element of the tensor operator Ty . This is
the factor that differentiates two tensors of the same rank.

As in the case of the Clebsch-Gordan coefficients, the "double-bar;’ matrix elements
may be defined in several ways (See Edmonds,? p. 88). The definition given is equivalent
to that of Edmonds and Racah, the only difference being one of notation

(@jm |TM | a’j'm*)

m

- D (aj || Ty [la’)) (_jn y ’) (10-28)
= (1M (@§ || T {1 @%§*) - V(jjL; ~mm* M)

Physical Interpretation of (aj || Ty [|a’])

In virtue of the orthogonality of the Clebsch-Gordan coefficients it easily follows
that

10-7




2 il T e m ) |2 e 11Tl (1029)

In radiation theory, if T| is the operator inducing transitions, the sum (10-29) over magnetic
quantum numbers and polarizations is defined as the line strength of the transition (Condon
and Shortley?, p. 98)

S (aj, @’j*) = [(ajll Ty |l a’i")I? (10-30)

and is symmetrical in the initial and final states.

The Reduced Matrix Elements of | and Y

The (1| T |1j*) are usually determined from (10-27, 28) after computing the easiest
of the (jm|TI"“ |j’m9. For the angular momentum operator one obtains

GUTUID =G D2j+ 11 83, %) (10-31)

For the spherical harmnnics, we have

, _ptletnerinesen ]1/; I
eiv1er - -0t . tL g

(1032)
Q) (L4
et kM+naL+nQv+n]% — 4
) {

4 (Ls L+ 4741 2 24 Vi
22)\2p =24

where g = (4 + L + 4£°)/2 must be an integer,
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1. IRREDUCIBLE TENSOR OPERATORS

The concepts and results of the previous section may be easily generalized to groups
of symmetry other than spherical. We shall consider groups of unitary operators and, as

usual, we will assume that the matrices of the irreducible representations are chosen to be
unitary ,*

Consider a set of operators T'Ey), where p assumes dy different values, which under

the operations R of the group transform aiways into linear combinations of themselves, in the
form given by Eq, (3-7)

RTY R - 3 T (AR |y (11-1)

The matrices with elements (yA|R|yp) afford a representation of the group. If this repre-
sentation is irreducible, the set of d}, operators is said to constitute an irreducible tensor
operator T(y) belonging to the irreducible representation I" of the group, The individual
operators T“y are designated as the components of T(y), and in particular ’I&y) is said to
belong to the A-th row of the representation. As in the case of the basis functions, this
definition is made in reference to a particular matrix representation. In what follows, we
shall assume that the tensor components T'ly and the basis functions |yu) transform under
the group operations by the same tepresentation matrices, so that

Rlayp) = 3 layA) (yA|R|yp) (112)

In virtue of the analogy between Eqs, (11-1) and (11-2), the algebra of tensor operators
may be developed along similar lines to that of the basis functions,

In Section 10, itreducible apl;jrical tensors have been introduced by way of the operators corresponding
to the spherical harmonics Yy s and the notation T| was used to prescrve the analogy. From now on we

shall follow the most p';imlent notation in the literature of tensor operators. In this notation the previous
Ty will be written as M
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PROJECTION TRANSFORMATIONS

By analogy with the definitions of "'projection operators’® we may now define “'projection
transformations’” or "'step transformations’’, which act on the components of tensor operators
in a corresponding fashion, By multiplying both sides of Eq. (L1-1) by (¥ ARy ')*dy e/
and adding over all the group operations, we obtain

dy - ()
5 ARLv Y R T et
+ I“{‘(y’,\ IRiy e 1*R I[L R

1.,
-3 ) ‘—;f—- S (A RIy Y MR )
1

(11-3)
= % T,&y) SN 8(y % y) Su )

= By ) B T

where we have made use of the orthogonality relations, Eq, (3-13).

The transformation analog of the expression (4-14) for the projection operators may be
written symbolically as

|
- 5 OARIyp* R| R (11-4)
: R

where the operator expression R| |R™! on the tight-hand side has been written in that form
i

to indicate that it acts on an operator T by means ot a similarity transformation RTR"!,

The analogs of Eqs. (4=9) and (4-10) are

07 17 =t sy, ) (11-5)
07 0% - 0 sty ) (116)

( . . . . .
The OI‘I}:) will be designated as “‘projection transformations’’ or *‘step transformations'’,

The decomposition of reducible operators into irreducible tensor operators follows
along the same lines as for basis functions.
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THE ADJOINT OF A TENSOR OPERATOR

The transformation properties of the adjoint of a tensor operator T(y) may be obtained
from Eq. (11-1). Since the R are unitary, we obtain

( t ... t
R T“") R -3 T ARy (11-7)

t
and therefore T(y) belongs to the complex conjugate representation I'*,

For the most important groups that we shall consider, the representations afforded by
the matrices D(R) and D(R)* ar: equivalent

CDR)C! = DR)* (11-8)

and T(y) is sclf-adjoint, The relation between the components of T(y) and T is, according
to Eqs. (3-3) and (3-5)

™ L5 1 Gy (11-9)
K po M

In spherical basis, the matrix elements of C may be taken as (Ref. 1, p. 288)

M?IC) M) = (=1)) =M 8(M% -M) (11-10)

apart from a common arbitrary phase factor, and therefore
- . t
T,E,])= 1) — M .[ilhz

. (11-11)
('t J4M (D)
T, =D T

However, the definition introduced by Racah®, which is the one most widely followed
in the literature, is instead

= ..l I -

which follows the conventions in the usual definition of the spherical harmonics (Cf, Eq, 10-10),
We also follow this definition in the present work when dealing with sperical tensors.

11-3




COUPLING OF IRREDUCIBLE TENSORS

Two tensor operators transforming under the operations of the group according to the -
same representation matrices may be added to give another tensor operator with the same
transformation properties. This follows from the linear nature of Eq, (1141),

. BN

As in the case of the basis functions, two irreducible tensor operators T1) apq T2
may be coupled to give tensor operators T(y) belonging to the different irreducible represen-

tations contained in the direct product I'y x I';. The coupling expressions are analogous to
Egs. (8-40) and (8-41)

ey g T(Z'l) T2 (4 yamglayi) (11-13)
12 F1 2

(}’1) ()'2) - {ay) _
T#1 T#2 afﬂ Ty " Cayulypyyany) 1-14)

where the coupling coefficients are the same as for the basis functions, This is easily proved,
since by use of Eq. (11+5) the derivation given in Section 8, Eqs. (8-45) to (8:52) may be re-
produced with the projection transformation OIEX‘I acting on the operator product T:’;l) T:Lyz) .

The coupling of two tensor operators SO and T ' which transform according to
complex conjugate representations gives, besides others, a tensor which is invariant under
the operations of the group. The coupling coefficients for this case may be obtained very
easily from Eq. (8-48) taking into account the orthogonality relations for the (yp’|R|yp) and
the fact that for the identical representation A, the matrix elements are

(AO|RJAO) = 1 (11-15)
For the nonsvanishing coupling coefficients Eq. (8~48) gives

(v |A0) (v 'y *|AOY = L~ (11-16)
4

where the labels y and 7 are used for complex conjugate representations. We can write

(yu7u|A0) = €'/ VT (11-17)

where e'? is an arbitrary phase factor.
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N .

The coupling expression for the invariant 1(A) is therefore, setting cid -1,

(A) 1 N CORCOR
Ip = === % 8T,

: (11-18)
v, wo

In spherical basis, evety representation is equivalent to its complex conjugate. The
equivalent of the previous equations is

(0) 1 J=M (1) (D)
I I emmm—————— '—1 S T 11'1
o e BT, (11-19)
However, the scalar product of two tensor operators is usually defined as
M M -M

which differs from the previous 1"’ by a factor of (~1)'/V2] + 1 .

GENERAL FORMULATION OF THE WIGNER-ECKART THEOREM

We shall now consider the factorization of the matrix elements of the components of

tensor opetators between basis functions classified according to the irreducible representa-
tions of the group.

By means of Eqs. (11-1) and (11-2) a typical matrix element may be expressed as
follows

() D% W €7) MRS |
(a373"3 |T#y layyypy) = (’13}'3#le R T#y R Rlal)’u‘l)

= RagyzpsIRTY R Rayy )

o A(“S”s"sl'f,{y) a1y A ) (AR Iy g ) (AR yi) (y 333 R [y 35)*
i3

(11-21)
Adding over all the group operations and dividing by h we get




(@yy3ps | T;(ny) Layyyeg) =

=1 3 (a3y3t\3\T§y) lagyid) 2 A Ry ) AR [yp) (y3h 3[Ry gp5)*
hoAan, R

(11-22)

The sum over R on the right-hand side may be expressed in terms of products of coupling
coefficients by means of Eqs. (8-48) or (8-52). If the irreducible representation T4, of dimen-
sion d,, is contained n, times in the product I'y x ', we have

()
(@gyap,) T#y layypg) =

fi
3 (“373'\3|T5\y) Ja R0 1) f 'EL(Y]M)’MBH)‘;) (71#1)’#‘3}’3#3)*
1:“‘7*3 A 3

n
3
= Z —l—(ylul}'ulﬂyyt;)‘ 3 L ()’1)‘177‘”3}’3)‘5)(113)’3'\3\T)(‘y)|a1)'1'\1)
B Vdy Apihy Vs
(1123)

The summations over Ay, A, and A; on the right-hand side are obviously independent of
the indices labelling the rows of the representations. We shall write them in the form

(‘13}’3 i T(ﬁ}') I ayyy) =

T = aaByAy) (a;yakalTiy)lalylkl)

Aphdy Vg (11-24)

and they ate usually designated as the *'reduced matrix elements’’, With this definition
Eq, (11-23) may now be written

n3
(agygungy)lalym) = ﬁ VTHL‘— (y iyl Byaus)* (a373llT(By)l|a;y1)
- 3

n (By)
%’ %} (Byssly ipyyi) (ayysl] T layyp (11-25) t

it
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If the product 1"y x I' contains the representation I', only once the exptession of the
Wigner-Eckart theorem takes the simpler form

(y)
(ayy 3] Tl’-y layyqe)) =

= T Cryegyply gog)* {azys|! T(y) e yy)
3

()
= \/_—(}——3‘ ()’3113\)’11‘1)’!‘) (03}’5H T ““1)’1) (11-26)

Similarly the expression for the reduced matrix elements, Eq. (11-24) also takes a
simpler form, where the index 3 does not appear. It may be mentioned that the summation

over one of the indices may be replaced by multiplication by the dimension of the corre-
sponding representacion,

It may be worthwhile pointing out that Eq. (11-25) can always be cast into the form
of Eq. (11-26), but this amounts essentially to a new definition of the coupling coefficients
by the condition that the reduced matrix elements of the tensor operator in question should
vanish for all but one value of the index S,

The Wigner-Eckart theorem forms the basis for the symmetry selection rules, The

theorem concerning the matrix elements of symmetric operators, Eq. (3-19), is also a
particular case,

The corresponding rule for non totally symmetric operators may now be enunciated
as follows: The matrix elements of the type (azy,pu,| le la1y1mq) vanish if the corre-
sponding coupling coefficients (ypu yply;n,;) are zero, In addition, if the representation

product I'y x T" does not contain the I'; representation, these matrix elements vanish for
all values of 1, juq, and pig0

It should be kept in mind that this is only a sufficient, but not necessary condition,
since the matrix elements may vanish because the reduced matrix element is zero, Thus,
for example, the matrix elements of the spherical harmonics (4 m| Y:{L)l 4£'m*) vanish for
4+ L + 47 odd, although the coupling coefficients for the corresponding representations of
R; are not zero, in general, In this example the reason for the vanishing of the reduced
matrix elements in question may be traced to still another symmetry requirement, namely
the parity selection rules, which are obtained from the consideration of the inversion
symmetry of the basis functions and operators.
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As in previous instances, it is convenient to point out the differences with other
definitions in the literature, which are not always equivalent, Our definition of tensor
operatots, Eq. (11-1) agrees with those followed by Rosc?, Edmonds?, and Racah8, How-

ever, Wigner's original definition (Ref, 1, p. 244, Eq. 21.16¢) is not equivalent to Eq, (11-1),
but is rather

RTY 7L s T (AR |y (1127
it A A

and therefore the T‘(y)

. tensor components are the adjnints of those defined by Eq, (11.1),

Ironically enough, out expression the the Wigner-Eickart theorem is not therefore
equivalent to Wigner's since this leads to the following

(y) )
(a3y3u3|T|uy layyiny) = -‘7-(1}7— (yansyelyyey) (azy,l T layyy (11-28)

instead of Eq, (11-26).

For the general case, the definition adopted by Koster” is effectively the same as
Eq. (11-1), In Ref, 7, the equation (4) defining the transformation of the tensor components
appears to be incorrect, but in the subsequent derivation it is actually the equivalent of
Eq. (11-1) that is used. The final expression is also equivalent to Eq. (11-25) although the
tesemblance is obscured by the introduction of the conjugate representations I';* and ™%,
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12. 6-3J COEFFICIENTS AND REDUCED MATRIX
ELEMENTS IN COUPLED SCHEMES

THE COUPLING OF THREE ANGULAR MOMENTA

The coupiing of three angular momenta j, jo, and j,, to give states with definite

total angular momentum ] may be carried out in essentially two different ways. One may

first couple j; and j, to obtain states characterized by an *‘intermediate’” j,, and then
couple these to j, to give [inal states with definite total J. Alternatively, one may couple
j1 to the intermediate j, 5 states obtained by coupling j, and j5.

The expression for the resultant states for a given value of ] is in the first case
G132 712203 M) = 2 1j om0 |13m3) (ypmy i smslIM) =
3

o im ) figm ) 1isms) (jymyjam, lpam ) Gyamyqfsmsl]M (12-1)
™3

The |JM) functions obtained in the second case are
i (i2i3)izn IM ’,’;} am) ligama3) (GymyiggmyslJM) =
mism;“ 1) lgmg) igm3) (5 ymgigmslizamy) (jymgjpam a3l I M) (12-2)
The two sets of |JM) functions for a given value of ] obtained according to these

two schemes are not identical, but are linearly related to one another, They constitute two
equivalent representations which are related by a unitary transformation.

i1 Gai DigI M = 2 1( i 12i )M i1 pin] lipGaisiap)) (123
12

The expression for the transformation coetticients is obtained by taking the Hermitian
scalar product of the functions in Eqs. (12-1) and (12-2)

(Giiditpin] liptdyize)) =

mEm (I M}jgp Migiam) (1amyaligm 1i.2m ) x () Mojamlisgmag) (jymyipsmy sl J M) (12:4)
13
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THE 6-j COEFFICIENTS

A more convenient and symmetrical form of these transformation coefficients is
afforded by Wigner's 6-j coefficients, defined by

jy 2 in (- 1)/ 1Hi2*i3t] e e e
- (G1i2) iyl lipG23)ias]) (12-5)

j3 J jz; V{Ej]_z'*'l) (2j23+1)

The 6-j symbol is invariant against any interchange of columns or the interchange

of the upper and lower indices of any two columns. For example

it 12 s I3 12 Ji i1 ko ky
ky ky kg ky ky ky ky iy i3
These and other symmetry relations will be consider in more detail in the Appendix
dealing with symmetrized coupling coefficients.

The general expression for the G-j symbol has been given by Racah® It may be written

in the form

i1 jz I3 (i1i2i3) %
ky kg ks (7 1k gk 3) (kyjok3) (k koj3)

vl PR ST bina
x E(=1)7 J1*12713 I1=J2t]s Ji+ia+]s
* Jjitigtis+1 jl+j2+k1+k2—z‘: jptiatki+ky-2z ja+iztkytky~z
(12-7)
whete the factors in the summation are binomial coefficients, while the symbols (abc) are
given by
(abc) = (a+b+c+ 1)! (12-8)

(~ma+b+o)l(a-b+c)l(a+b=0)!

and are thus closely related to the trinomial coefficients. The index z runs over all the
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IS . . . . e n, .
positive integral values such that n 2 r » 0 for every binominal coefficient (r) in the sum,

The 6-j coefficients vanish for those sets of values of the arguments for which any
of the (a b ¢} does not satisfy the triangular condition.

The 6-j coefficients play an important role in the exptessions relating reduced matrix
elements of spherical tensor operators in different coupling schemes,

The numerical values of 6-j symbols required in our work have been obtained by means
of a program for the 1BM electronic computer, to which we make reference in the Tables.
REDUCED MATRIX ELEMENTS IN COUPLED SCHEMES

In practical applications, it is often necessary to determine the matrix elements of
operators which are obtained from others by the coupling schemes previously discussed.

Similarly, it is also often convenient to choose a system of basis functions resulting from
the coupling of functions of other bases,

In this respect, there are a number of important results relating the reduced matrix
clements in the different schemes.

COUPLED TENSORS IN COMMON BASIS

. . . . k L7)
Let us consider two irreducible spherical tensors T( y and T( 2" which operate on

the samc sct of basis functions. We shall derive an expression for the reduced matrix elements
of the coupled tensor T(¥)

() o k) k)
’Iq =51qu qu (k19k;49,51kg) (12-9)

in the same set of basis functions in terms of the reduced matrix elements of the individual
rensor operators.

The reduced matrix clements of T are given by

(@il T e = V2T 8 (agmi T la%jm ") (j mkqljm) (12-10)

which is a particular case of Eq. (11:24) after the sum over @ is carried out.

The mf(nlt‘rix eleme'r:ts appearing on the right~hand side may be expressed in terms
of those for T v and T( 2 by means of Eq. (12-9)
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R P k) (k) L,
@jm T e’ m?) = ¥ (k,q.koq,lk (@jmlT VT 2a’jim?) =
4 9 qa; 4,

10,08 _»
1} m

- . (kl) R I ey TSN T “‘2) P s
504 otk 3 (ajmlT P la”j"m ™) @ m (T Pja’i'm ) (121D
9y a ‘ 1 99

. k ko) ,
The reduced matrix elements of T( l) and T( 2" may now be introduced by use of
the Wigner-Eckart theorem

1 L. : (k) Rl s P8 (k ) p
@imTMe’ i) = 5 @i T Ve @1 T 2 a’i) <
a )

. 1
4 25 1) (274 1)

(k 4q (k541K (G m >k 1q,im) (5 * ko941 § ") (12-2)

When this is introduced in Eq. (12-10) a summation over products of four coupling

coefficients appears on the right-hand side, which may be expressed in terms of a 6-j coef-
ficient

I (rmkqlim) (k yq gk 0ol k) (7 mk yqyljm) (j'm "k 5q,] § #m 7Y =
24 1 m'm™aqy .

Y i ok g7
(- 1)l+k+l / 2k + 1 g 2 (12_13)

k2 i" kl

. ) . . k
The final expression relating the reduced matrix elements of T® to those of T( v
and T(kz) is

(@il T s =

i i’ ¢ k L I Ll (k P ] k i’
0P AT 2 @il T e @ T ) 3;( ;
a ’ L P k
2 1 X

(12-14)
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TENSORS IN COUPLED BASES

It is also of interest to derive expressions for the reduced matrix elements of tensors
(ky) k) . . . . .
§V and T 2’ which operate on different sets of basis functions |a,jym,) and |@ 5 Hms),

respectively, in a basis |a] M) obtained by coupling basis functions of both sets, in terms
of the reduced matrix elements of ' + and T 2’ in their respective bases.

The simplest case to consider is that of an operator which acts only on the functions

@i m) of |a,j,m,). We shall omit the derivations at this point, and just quote the results.
11 21 2M2 point, just q

P (k) L ’
(01112»1” st | a Illza.l ) =

it Ik T
oM Loy @y il 8V i) & i) i e & (12-15)
ll 12 ]1

k
Similarly, for T2

. (k) st
(aiyjn JIT Fla’ifis, 7 -

o T ] kp J°
T Jor h@p e i, 1T e 86 i) 1 e i (12-16)
2 1 12

Another important case is that of the scalar product of two such tensors. We shalil
write k = k= ko

(aiyip I S& TOa'ifis, 19 -

i{ } 1 ..

. % %'(aljl"S(k)“a"];)(a”,z"T(k)“a"z)
a

o i k
SV ST (B i‘f
)2 )2

(12-17)

k ko). .
The general case of the tensor product XK of S( 1 and T(‘z) involves the 9-
symbols
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(aiyigd IX® [t ig]n = V@ + DK+ D@+ 1)
(k) (ky) il kl i{

x 2 (@i IS Vla”i) @ i T Plati)y  {] K 37 (12-18)
a . .4
12 kg iy

The 9-j symbols are related to the transformation coefficients between two coupling

schemes of four angular momentum vectors

by a2 i

Lo (615297 12000 37 4 3400 1G5 1330 1321 Y 2000)

13 14 134 = (12-19)
V Qig+ DQisg+ D2y + D (2 )

Ji3 iaa

They may be expressed as a summation over products of six 3-] coefficients, and

2

also as a summation over products of three 6+j coefficients?, in the form

ha i s 2 iyg i | iz 2z irs 23 i

i21 jzz i23 = 3 (~ DA+ 1) 3.11 .21 31; ’.12 22 .32% % 13 ‘23 4332

o A J32 133 A Jar A 23} (A dn 2

) Ja2 )

31 )32 I33 (12-20)
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13. UNIT TENSOR OPERATORS IN SPHERICAL BASIS

From the Wigner-Eckart theorem it follows that operators may be defined by specifying
the values of their reduced matrix elements, This is a convenient form of definition for many
different types of operators such as raising, lowering, coupling, etc.

Of particular interest are the unit tensor operators utk ) of Racah®, which play an
important role in the treatment of the several-electron problem. In a later Section we shall
consider their relation to the infinitesimal operators of the rotation groups in several

dimensions. At present we shall consider the one-electron case and show how the u‘fl can

be related to the familiarangular momentumoperators and to the coordinate operators in
spherical basis.

The unit tensor operators u®) are defined by the condition that their reduced matrix
elements are unity between states with the same aj, and zero otherwise

(@i *Il w1 aj) = 8(j%) 8a’a) (13-1)
Their matrix elements are therefore (omitting the index a)
TN (DI T T - j-m”fj k
Gm’ut*? fim) = @) + 177 (jm kq|jm*) = (-1} , (13-2)
q -m’q m

In virtue of the Wigner-Eckart theorem, the matrix elements of a tensor operator T
in spherical basis between the same states are proportional to those of u(k), the constant
of proportionality being the reduced matrix element of T

Gm L T8 ) = G 1T ) G 0 fim) (13-)

For a given basis, characterized by a certain value of j, the operators u(q“) for k> 2j
are identically zero, since the corresponding coupling coefficients vanish,

According to Eq. (13-2) the non-vanishing matrix elements of u*) are along the q-th
parallel to the main diagonal. Moreover, for a given value of ¢, the matrix elements of
operators with different k values satisfy the following orthogonality relations

e G 13y (3 maalu®®) iy o Sk .
?,,‘(1”“+‘1|“q \]m)(bﬂquUq | jm) T (13-4)
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In order to illustrate these facts, we reproduce in Table 13-1 the mattices for the
non-vanishing u(qk) opetators in the space of the basis functions for j = 1,

TADLE 13-1

0
u{?

1 00
JLlo 1 o
310 o 1
VR Gy
0-1 0 1 0 0 0 0 0
Llop 0 -1 1000,/%-100
0 0 0 0 0 -1 01 0
V5 ul@) V5 uld V5l V5 ul® V5 ul®
0 0 1 0-1 0 1 0 0 000 000
ooo/.%_001/}_o-20 L1 0o o 0 0 0
00 0 00 0 >l1o o0 1 0 ~1 0 1 00

Any (3 x 3) matrix may be expressed as a linear combination of these nine matrices.
It may also be noticed that the |jm) for j = 1 are eigenfunctions of u&o), u(ol), and u(oz) ’
which are therefore a complete set of commuting operators in that particular space,

The matrix elements of u{*) for a given q may be considered as the components of a
vectar in 2j + 1 - |q] dimensions, The number of such vectors corresponding to the several
possible values of k is also 2j + 1 ~ |q|, and according to Eq, (13-4) these vectors are
orthogonal, They will be also orthonormal if we choose to consider the operators
VZk+ 1 u(;‘) = v(:), which in this as well as other respects are motre convenient than the
u(:). Any matrix Aq in 2§ + 1 dimensions containing elements only along the qeth parallel
to the main diagenal may be expressed in tems of the above vectors.
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In the sub-space of the 2j + 1 basis functions associated with a given value of j, the
(2j + 1)? operators u(qk) for k < 2§ form a complete set, Within that sub-space any operator T
may be expanded in ternis of the basic set

2j

T- = >: (%) (13.5)
k=0 q= S frata

The matrix elements of T are given by

Gy meq| Thim) = & @y Gy meq|ug) [jm) (13-6)

The coefficients a, , are easily obtained by multiplying both sides by (j, m +q|u(qk ) jm),

adding over all m’s and introducing on the right hand side the orthogonality relations (13-4).
One obtains,

@ q= @k + DT Gy meqlu’y jm) G, meq] Tlim) (13-7)

In general, the coefficients e, need not be independent of q. If they are, the operator

T is a sum of irreducible tensor operators T%) and the coefficients are the corresponding

reduced matrix elements, The operators we shall have to consider are usually of this type.

RELATION BETWEEN THE u(:) AND THE ANGULAR MOMENTUM OPERATORS

The operators u(:) act on the basis functions as follows

609 m) = [, mea) @+ 1) (m kqlj, meq) (13-8)

This immediately suggests that they should be expressible in terms of the angular momentum

operators ], J_, J, and J2, In particular, they may be conveniently written as a product of

the q-th power of the meraising operator ], (or J_. for negative q) and another opetator diagonal

in this representation, which should therefore be a function of only T2 J2, and the unit operator.
Ve shall write (for ¢ > 0)

® =P U4 T (13-9)
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The operator (J, )9 acts on the basis functions according to the well known expression

o G=miGrnrp! |4
q = 1j, m+q)
(3,23 jm) = 1j, m4q {(i..m—-q)'. (j+m)! ]

{(13-10)
= ‘]; m+q) f + (]a m, q)

while the eigenvalues of the diagonal operator f, q(.lz, ],) are given by the same function
fy g of the eigenvalues of J, and )2,

fkq(.lz. o) im) = {jm) £ o GG el)y m) (13-11)

The explicit form of fy ; is most easily determined from the known expression for the
coupling coefficients and the 'equation obtained by introducing Eqs. (13-9), (13-10) and
{13-11) into (13-8), that is

/—1-—-2i n Gokalj, m+q)=f, (G,mq) f 4 GG+1), m) (13-12)
4
The expression for the coupling coefficients may be written in the form

Sz Gmkalj, mea)-
G=m)! Gome)! |2 | Q=10 (ke k-t | %
(j=m=q! G +m)! @ik DI KD K (13-13)
x X (~1))‘“‘ (k) ( k ) (G+m)! (j-m-q)l
A Ao \k=q-2)  (rm=-2) -m=k )

The first factor on the right hand side may be recognized as f_, the remaining ones

correspond to f, .. The summation is a polynomial in j and m (of degree k~q) which can be
rewritten in terms of j(j+1) and m. These may then be replaced by J2 and ] ,, respectively
to yield the expression for the operator frq 2, I

The expressions for the u(:) operators for k = 0, 1, and 2 are given in Table 13-2,
Actually, it is more convenient for this purpose to exptess the operators u(q") in a form
slightly different from Eq. (13-9), namely

ul) = (I 03,1 J@j-K/ Q) + k o+ 1) (13-14)
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TABLE 13-2
UNIT TENSOR OPERATORS. SPHERICAL BASIS

u - (TF, A1) V@ K@ vk DY

k q (J )IF, (2] )
0 0 1
1 -Vz1,
1 0 2],
-1 Jai_
2 Bk
1 -J61, 21,4 1)
2 0 20352 - 4H
-1 J61_21,-1
-2 V672
The operators u'* for k < 6 are given in Table 13-3.
) TABLE 13-3
UNIT TENSOR OPERATORS u{*) SPHERICAL BASIS
W e FL U2 1) V2 01/ @ s ks DY
k Fi, (333,
0 1
1 2],
2 20337 - JH
3 41,0513 -39 + 1
4 23575 - 20237 + 304+ 25)2 - 647
5 41,6311 = 107207 « 1504 4 10537 - 5047+ 12)
6 423118 - 3151707 410512045284 735 ] 4= 5251 0% 40 14+ 20420 B

13-5




RELATION WITH THE Y\

The relation between other opcrators in spherical basis and the uﬂ'l‘) may be established
along similar lines, According to Eq. (13-3) the matrix clements of tensor operators between

basis functions of the same j may be expressed in terms of those for the u(:) .

Thus, for example, for the matrix clements of the operators corresponding to the
spherical harmonics, we have

G’ P YS2 Vgm) = Gm L ull? Him) G YD) (13-15)

where the reduced matrix elements are given by

GUYS) 1= Dni {2lel ) Toje 1y ) L (13-16)
4n 000
It may be pointed out, however, that the correspondence between the Yﬂ‘) and the
ugdl‘) is of a more testricted nature than in the case of the angular momentum operators.
On the one hand, the Y{) have non-zeru matrix elements between states with different j

values (satisfying the triangular condition), while the u{}) do not, by definition. Thus,
although one may write

YUY oy () YR 4 5) (13-17)

this proportionality relation is only valid within subespaces with fixed j-values, On the other
hand, the proportionality factors (j|| Y1) {}j) also vanish for L odd (assuming j integral),

and therefore the u(,'l,‘) cannot always be expressed in terms of the Yg}‘), unlike the case of
the angular momentum operators,
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4. THE BASIS FUNCTIONS FOR N-ELECTRON SYSTEMS

THE INDEPENDENT PARTICLE REPRESENTATION

ANTISYMMETRIC BASIS FUNCTIONS

The simplest type of basis functions in the N-electron case are the products of N one-

electron basis functions. These may be considered as the eigenfunctions of a Hamiltonian
of the form

N
H-3 H, (14+1)

i=1

which corresponds to a system of non-interacting particles, The one-electron basis functions
|a); for the i-th electron are the eigenfunctions of H,

H 1) = |a), E, (14-2)

while the N-electron product functions satisfy
H |9.)1 ‘b)) [N lq)N = ‘a)l |b)2 s e ‘q)N (E34'Eb+"‘+Eq) (14'3)

and the energies are additive, as it corresponds to a system of non-interacting particles,

Since the Hamiltonian is a symmetric function of the coordinates of the electrons, it
follows that the NI product functions obtained from |a), [b),...|q)y by permutation of
electron indices all correspond to the same value of the energy, E=E_ + Ey.us + Egp
This degeneracy does not occur in a physical N-electron system, since the Exclusion
Principle asserts that the only states which are allowed are those whose eigenfunctions
are antisymmetric under a permutation of any two electrons.

For every set of N different one-electron basis functions there is only one antisymmetric

linear combination of product functions, namely the Slater determinant

la)y la), ..u.l la)y

b)) 1b)y eases |b)
. L 2 N )
[ab.....q]-\/_N_r (14-4)

(AR R A R R R NN

sS4l e ssscr et

D) (g eeves Dy
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We shall designate the N-electron product functions in the form
fabeee @)= [a); Ib)y oot lqdy (14-5)

and use the notation [ab ... ql for the corrcsponding determinantal wave functions.

The phases of the N-electron product functions are usually taken to be unity, irre«
spective of the order of their factors. When forming the antisymmetric linear combination of
these, [ab ... ql, the new overall phase factor is choscn so that a particular product function
lab ... q) has the coefficient 41 in the expansion of the determinant if the one-electron labels
appear in some standard order, which has to be specified.

The previous equation (14-4) may also be written in the form

[ab .n-q]:’AN‘abvubq) (14‘6)

where Ay is the antisymmetrizing operator

1 P
A w e———— —_ 14'7

the sum extending over all the operations P of the permutation group of N particles, and p
is the parity of the corresponding permutation P.

The projection operatot F}:A) for the antisymmetric tepresentation is, according to
Eq. (4-14),

A - : -1 P (14-8)

and thetefore differs from Ay by a factor /NI
Ay = VNI B (14-9)

Unlike F’P(,M, the operator A is not idempotent, since

AL = VT Ay ' (14-10)
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MATRIX ELEMENTS OF SYMMETRIC OPERATORS

Ons-particle Symmetric Operotors

The types of operators we shall have to consider in the several-electron problem are
symmetric with respect to any interchange of electron indices, According to Eq. (39) these

operators commute with any petmutation P and thercfore with the antisymmetrizing operator,

We shall first consider operators of the form

z

F=~3 f (14-11)

where the individual f; operate only on the basis functions of the i=th electron. The f,
operating on a particular product function |ab ... q) give

F1a)) 10 e e e 10); oo [y = 1201 1B)y o ua 1) onn |Q)y (€ 71f1C) (14-12)

or

filabevicoaa M= Jabauec’unsq) (e”)flc) (14-13)

where the summation extends to all the onc-electron basis functions. The coefficients
(c’|f|c) are numbers independent of electron indices,

We can repeat the process for all the f;, add the results and operate with Ay on both
sides. Since A and F commute, we can wtite the leftshand side in the form

Ag(2f) Jab..q)=F Ay jab...q) = F [ab... q) (14-14)
and therefore
Flabewocoeoql= a2‘[s|‘b cee Caeaql (a’ifla) + 54
+CE, labeevc’eus ql (clffe) + ava qE, labsesceaa g1 (g f|q) (14-15)
According to this expansion, a symmetric operator of type F connects only states ¢
and ¢ * which differ at most in one of the labels of the one-electron basis functions. In

general, the determinants [ab ... ¢”... q] will not have their labels in the standard order
and are therefore related to the cortesponding standard determinants ¢ * as follows
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!/I’= (_1)[) [ab voe C‘-ho q] (14'16)

where p is the parity of the permutation which transforms one ints the other,

If the states ¢ and  * differ in one label, ¢4 ¢, the matrix elements are given by

W \Fl) = (D" (faboooc’oos qHEab oo c 2o iq) = (<1 (e *|f]c) (14-17)

The diagonal elements arc

GBI = @]f1a) + ven 4 (ClfC) 1 ovn + (qfl0) = 2 (2}f]0) (14-18)

t=a

since each of the summations on the right in (14=19),for a’= 8, «ea, € = Cy vus, (‘= q,
respectively, contributes to the coefficient of [ab ... ¢ +..ql.

Two=particle Symmetric Operators

Another important class of symmetric operators of interest in atomic problems are of
the form

(14-19)
where the g, operate only on the basis functions of the i-th and j-th electrons.

Following the same argument as in the case of F = % f,, we arrive at the expression

Glab.wecaiieinql=

= 3 [a'b’,i.caiveaiaql(a’b’|glab) « ...

’ oy #
ﬂ‘b

+ % [lab.ssc’aiie’aaiql{c’e’lglce) 4 aan (14-20)

’ ’
[«

and therefore a symmetric operator of type G connects only states ¢ and ¢ which differ at
most in two of the labels of their one electron basis functions. The same remarks as before

apply in reference to the relative phases of the ¢i's and the determinants on the right-hand
side,
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In every summation in ‘Eq. (14-20) both indices assume all possible values, and for

every pair of values ¢ “and e’ there are two terms for which the dcterminants are not inde-
pendent, namely

[ab veic’veve’civql(c’e’|glce) +labiuse’viac’ven qle’c’|glce)  (14-21)

Since one determinant is the negative of the other, and for ¢’ = e” they vanish, we may
replace the summations in Eq. (14-20) by sums over pairs ¢“>e” in the form

Glab.ioceiieaiigl =

= 2 [ﬂ'b'-..cy..e.-.q]i(a'b"glab)—(b'8'|g|ab)]+n.

/. »

a’™>b

+ E [ab coe C‘o.sC'tov q]l(C'C'1g|CC) - (e'c'lglce)!+.n (14'22)

». 14
c>e

If the states ¢ and ¢/ * differ in two labels, ¢’ # ¢, and e’ £ e, the matrix elements of
G are given by

(l/”‘F"/‘) = (_1)P ([ﬂb ars C‘Ill e’;uoq] ‘Gl[ﬂh s Csae € e q])
= (1) {(c’e’|glce) — (c’c’|gl|ce)} (14-23)

If v and ¢ * differ only by one label, c*# ¢, every sum over pairs c’>a c’> b’ ..,
c’> q’ contributes to the coefficient of [ab veec’vesql whena’=a, b’ =b, «vv, q’=q,
respectively, The matrix elements are therefore

(¥ *1G|¥) = (<1)" (lab «vuc”vus @G| laD v uu € vua q1)

=P S fetglet) = (e *lglet) (14:24)

t=a

If ¢ = ¢*, all the summations contribute to the coefficient of {ab ... q] when the

primed indices ate equal to a, b, ..., q, and the diagonal elements are given by the double
sum

WG - 2 (kelglko) - Gk lglko), (14-25)
k>t=a

14-5




THE CENTRAL-FIELD AND STRONG-FIELD REPRESENTATIONS

Within the independenteparticle scheme the one-electron basis functions may be chosen
in different ways, depending on the particular form of the one<electron Hamiltonian H;, of
which the |a); are the eigenfunctions.

Vhen considering free atoms or ions these basis functions are usually chosen to be the
eigenfunctions of a one-electron Hamiltonian of the form

I = . pf +u{ry) (14-26)
2

In this "‘central-field’’ scheme, the one-clectron basis functions are characterized by
the familiar quantum numbers ntm_ m 1+ The cigenvalues of such a Hamiltonian depend
only on the quantum numbers n and £, since H; is independent of the spin or spatial orien-
tation, It therefore has a high degree of degeneracy, since all the states of the same con-
figuration have the same energy.

The so-~called "*strongsfield’’ scheme is often used when considering ions in ctystal
lattices. In this case the one-eclectron basis functions are eigenfunctions of a one-electron
Hamiltonian of the type

”i b fA(Oi,(ﬁi) (14'27)

which is a symmetric function under the operations of the pertinent crystallographic point
group.

In the central-field scheme our clioice of standard order for the determinantal basis
functions is that where the N sets of quantum numbers n 4, o, of the one-electron functions
are listed in dictionary order nccording to increasing values of n and 4, but decreasing values
of m_and m; . This differs from the standard order in Condon and Shortley?, which is really

according to n 4 m, m,, so that in their case the ordering by m; values precedes the ordering
by m, values.

Each set of n{ values labels a shell, The list of all sets of n £ values, each with a
superscript indicating the number of electrons in the shell, specifies a configuration. The
states of a configuration are described by listing also the m  and m; values of the electrons
in the incomplete shells, For these, the several m | values corresponding to m, = Y are
given inside parenthesis labelled by an upper + sign, then the m; for m = - Yina
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parenthesis lnhelled by a minus sign, For example, a state of a configuration of Cr** is
1522522p03s23p63d4 (21, ~11" [-11”

In order to simplify the notation and use only the minimum necessary number of labels,
it is cusiomary to retain-only those which are relevant to the problem under consideration.
Thus, for example, when considering only states of the Ce** jon in the given configuration,
it is only necessary to specify the m_ m; values of the four d-electrons in the incomplete
shell, and those will be written simply in the form {21, -11¥ [~11~, [210]*[-2]7, etc.

In later Sections we shall use a still simpler notation, If only states where all the

m , values are +}4 are considered, we shall write a symbol [2101* as [210]. Similarly a
symbol like [21, —1]* [-11~ will be replaced by [211|11.




15. THE BASIS FUNCTIONS FOR N-ELECTRON SYSTEMS
THE LS-COUPLING SCHEME

The independent-particle Hamiltonian previously considered is not a good approxi-
mation to the true Hamiltonian of an atomic system of several electrons, It does not include
terms which make a significant contribution to the energy of the system. If the terms cor-

responding to the Coulomb repulsion of the electrons and the spin-orbit coupling energy ate
included, the Hamiltonian for a free atom or ion takes the form

N 2 N 2
H-3% (L_ 2_Zel |, g(ry 1..5) 3 = 15-1)
P\ BT S s, I (

It is found that in practice this constitutes a rather good approximation to the true

Hamiltonian, Experimental results also show that the spin-orbit coupling energy is usually
small compared to the other terms,

If the spin-orbit coupling terms are excluded, the resultant Hamiltonian is spin-
independent, and is therefore invariant under rotations in the coordinate space as well as
in the spin space. It is therefore convenient to choose a system of N-electron basis functions
class.‘ied according to the different irreducible representations of these rotation groups.
This is equivalent to a classification according to the different eigenvalues of the com-
muting operators L2,82L_, and S,. The vector operators L and $ correspand to the total
orbital and spin angular momentum, respectively, and are given by

L=ty + 0y + ouis Iy
(15-2)

S = 5.4 85,4 .t sy

where the Ii and s; are the

corresponding operators for the individual electrons. The operators
L2 and §2 are

L2

]

Ly = L+ Ly + L2
2 + + z

(15-3)
52

(89 = L (5,5 + 5.8,) + 8
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The basis functions in this representation are characterized by the corresponding
quantum numbers and written in the form {aSL MM, ). The symbol a stands for all the rest

of the indices or quantum numbers necessary to specify the state, such as the configuration,
etc.

According to the properties of symmetric operators, Eq. (3-19), in this representation
the Hamiltonian of the free ion (with no spin-orbit terms) has zero matrix elements between
basis functions which differ in any of the quantum numbers SI. MgM, .

CONFIGURATIONS OF EQU!V.ALI?NT ELECTRONS

When considering the configurations of several equivalent electrons it is often found
that there are several states with the same set of quantum numbers SL MgM, for a given
configuration. The simplest case when this occurs is for the d3 configuration, to which two
D states belong. According to the arguments given in Section 8, it is convenient to classify

these states according to the eigenvalues of other operator or set of operators which com-
mute with the previous L2, §2,1. o and S_.

For the configurations of several d-electrons, ({ = 2), the appropriate operator is

GRy = 3 (UGY" 4 7(u0Y’ (15-4)

For the configurations of several f-electrons, (£ = 3) there are two operators of
that sort

G(G,) = 3IUMI% 4 Uy’ (15-5)

G(Ry) = 3V 4 70U 4 11Uy (15-6)

The Uk are the N-electron operators corresponding to the unit operators u(k)
discussed in Section 13,

N
Uk - 3 ki (15-7)
i

and may be expressed in terms of the angular momentum operators, as previously indicated.
In particular, the operator U(1) is proportional to the total orbital angular momentum operator L.
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In the same way that a classification of the basis functions according to the eigen=
values of L2, or [U(D]? i equivalent to that according to the different irreducible repre-

sentations of the rotation group in three dimensions, R 3 the classification accoiding to the

eigenvalues of G(R ) or G(R,) is equivalent to that according to the irreducible represen-
tations of the groups designated as Rg and R, r;:spectively. These are rotation groups in
the space of the 2.f + 1 basis functions for d- or t-electrons. The group designated as G,
is a subgroup of R5. The three-dimensional rotation group Rj is a subgroup of all of these.
We shall discuss these questions at greater length in the Appendix. At this point we shall

only indicate the basic facts which are relevant to the forthcoming discussions.

The irreducible representations of Ry are characterized by two integers A_ > A

and symbolized by (A A;). The corresponding eigenvalues of the operator Q(RS) are a
function of Apand A,

(A pAy) = é— (AL +3) + A0, + D] - (15-8)

The irreducible representations of Rg which are of interest in the classification of the states

of the dN configurations are given in Table 15-2. This also shows the reduction of these
representations into those of Rs.

The irreducible representations of the group R, are characterized by three integers

AL 2 Az > Ay and symbolized by (A (A h3). The eigenvalues of the operator G (R,) for
the eigenfunctions of the representation (AAgA,) are

The representations of the subgroup G, are characterized by two integers By 2 feg
and also symbolized by (pi,). The eigenvalues of the operator (} (G,) for the basis functions
of the (it u,) representation are given by

Sy = 4 Luglug +9) & g + 4 + gy (15-10)

The irreducible representations of R, and G, which are of interest in the classi-
fication of the states of the fN configurations are given in Tables 15-3 to 15-7, These
also show the reduction of the irreducible representations of R, into those of G,, and
these in turn into representations of R,
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The |gSL MgM, ) Functions

The vector-coupling methods described in previous Sections require some modi fi-
cations when applied to the determination of the N-electron basis functions in LS-coupling,
on account of the antisymmetry requirements, There are essentially two methods of approach,
One starts with antisymmetric N-electron basis functions in the independent-particle repre-
sentation, and determines linear combinations of these which are |[SL MgM; ) basis functions.
The other approach starts constructing |S1. MgM, ) basis functions by use of the vector
coupling methods and then the appropriate linear combinations of these which are anti-
symmetric for interchange of electrons. Both methods have their own virtues and disadvan-

tages, The first involves simpler types of arguments and we shall consider it in the present
Section.

We shall describe the method for n 4™ configurations of equivalent electrons. The
extension to those consisting of two or more incomplete shells presents no additional dif.
ficulties. In its simplest form, the method was used by Gray and Wills 0. We shall also
show how it can be modified and extended to obtain [SI.MgM, ) basis functions which are
also eigenfunctions of the operators G(R,;, ,) and G(G,), which we shall call |gSL MgM, )

In this method the eigenfunction |g S1. MM, ) for the highest Mg and M, , namely
Mg = 8 and M, =L for each state is found by orthogonality considerations. The eigenfunc-

tions for the other possible values of Mg and M; may then be found by repeated application
of *he loweting operators S_ and L._.

In ordet to form the |gSL. Mg M, ) linear combinations we shall need to know the
effect of operating with S_,L._ and Uflk) on the determinantal basis functions. Since all
these operators are of the type F =3 f,, the results are given by Eq. (14-15).

i

For simplicity, the basis functions of the previous Section will be written in the
form

[mllmIZ.“m[tlmlﬁ-l.”mIN] (15-11)

where the m; values listed on the left of the vertical bar correspond tom, = %, those on
1
the right tom = - % Il they all correspond to m, = !4 they will be written as

[mlimlg’“m’,] (15-12)

with r = N.
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The application of L._ to one of these is given by
.

Lolm veempoidonamy ] =,3;_ [y voem=1 foeemy ] \/({m,i)({-m,iu)
‘ (15-13)

Similarly, for S_ we obtain

. _1\P )
S"[mlx'“mli”'l'"mlN] mZI.[m,l...l...mli...mIN]( 1 (15-14)

i

For the operators U;k), according to Eq. (13-8) we obtain the following result

(£ m,ikq |4, my + q)

(k) p
U my weampeoe]eeamy 1= 2lmy coomp +qeei]oamy J(=1)
q 1 i N m 1 i N

i V2244 1

(15-15)

As indicated previously, p is the number of interchanges necessary to bring the re-
sulting m, + q value to its place, so that in the final determinant all the m; values be ordered
in descending order. If the new '“1 + g value is the same as any of the other ml values for
the same m, the corresponding determinantal function vanishes,

In the actual performance of the operations it is advantageous to use some diagrams
where the matrix elements on the tight- hand side of Eqs. (15-13) and (15-15) are shown con-

necting the corresponding m; values. This allows the effect of an operator on the basis func-
1
tions to be determined by inspection.

For example, when considering configurations of equivalent d-electrons, (£ = 2), we
have the following diagram for L

m; 2 1 0 ~1

(mp~ 1| L_{m) \2/\ \ﬁ/\ﬁ/‘ ’\2_/‘ (15-16)

With the help of this diagram, the effect of L._ on a determinant such as [20{1] is easily found
to be

L_[20]1] = /6 (20/0] + V6 [2T|1] + 2[10]1] (15-17)
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Similatly, the corresponding diagrams for the operators U(”, U(” and U are

my 2 \ 1 | l, 0 ‘ [:::::::] [::E:é::i
m; = u’} m) \\/3—/\\\-\/2—/\—\/2_/\\\ ‘/3_/\ (15-18)

my =1 ] 7 1 ]
(15-19)
a(m;=2/U*3) ;) K. \/_>< X\/s_—/

m, | 2 | 1] | o | |
AN (15-20)
a(m,—‘}lU_(_?hu[) \ \/& 3J

All the matrix elements have been multiplied by the constant a = /2.5.7 to avoid
denonminators. A constant factor may always be omitted, since normalization is easily ac-
complished. For example, the operation of U on [21|0] is

u® o - L i oo+ o1

(15-21)
. Vs 1-[2112) - (1001}

The effect of S_ on a determinantal basis function requires only to consider the
permutation factor (- 1)?. Thus, for example,

S_[2101] = [210T] - (21Tj01 + [20T|1) - (10T[2] (15-22)

The determinantal basis functions are already eigenfunctions of L. and §, with
eigenvalues given by

My = 2 my
! (15-23)
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In the process of determining the |g SL MM ) functions according to the present
method, it is convenient, though not always necessary, to obtain first those for the highest
value of the total spin 8, and proceed to those for S = N/2 - 1,..., 1/2 ot 0, successively,
It is ohly necessary for most purposes to determine one function f[or every set of values
gSL, and the simplest one is usually the function |g £ L SL) with the highest values of Mg
and M, . The remaining ones may be obtained by repeated operation with S_ and L_.

For a given value of S, there is only one determinant with Mg = § and largest M,

and this must correspond to the function [S1.,,SL ) of the state with the highest L for that
multiplicity,

Operating with L._ on this function one obtains the function |SL8,Ly ~ 1). If this
is a linear combination of n determinants, the remaining n -1 lincar combinations of these,
orthogonal to the previous one, must correspond to states with L = L, ~ 1, Those belonging
to states of higher total spin may be assumed to be known from a previous stage. The rest
are |S,L.,, ~ 1, S, L.;; = 1) functions, It there is more than one, they can be determined so

that they he also eigenfunctions of the (} operators of Eqs. (15.4) to {15-6). The appropriate
orthogonality conditions are described below.

The operator L_ may be applied to these functions with M; = Ly = 1 and the whole
process repeated until finally the functions with the lowest value of L are obrained. It should
be pointed out that it is not necessary to opetate with 1._ on the actual linear combinations
of determinants obtained at a given stage, but only on the determinants themselves, since
this provides eyquivalent, but simpler, orthogonality relations to be satisfied by the new
[SL MgM;) functions to he determined at the next stage.

The additional orthogonality conditions necessary to obtain |SL MM, ) functions
which are also eigenfunctions of the (} operators are obtained by use of the utk) operators,
We shall consider first the case of the dN configurations. The corresponding operator @Ry
is

Ry = 3UMZ 4+ 7(U3))? (15-21)

Since U1 is proportional to L, in a representation where L2 and G(R ) are diagonal
the operator (U2 must also be diagonal. Accordingly, the operators ut® acting on a
function that belongs to a given irreducible representation (M A,) of Rg can only give func-
tions which belong to the same irreducible representation, and which are therefore orthogonal
to all those belonging to others. A familiar analogis afforded by L, L, and L_, which
operate on |L M, ) eigenfunctions to give only others with the same L value.
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In the case of the [N configurations, the two operators to be considered are

GG, = 3[UMIZ 4 112

and (15-22)
G(Ry) = GGy + 7[UO?

The same arguments used in the case of R show that in a representation where

L2, G(G,) and G(R,) are diagonal, all three operators W12 U2 and [UG)1? are also

diagonal. The operators U connect only functions belonging to the same irreducible

tepresentation (p;p,) of G,, while the operators U((la) connect only functions of the same
irreducible representation (A A0 3’) or R4,

The process of determining the eigenfunctions of the L.2,$2, and G operators is
facilitated by the knowledge of the number of states to be expected and their classification
according to the eigenvalues of these operators (or the irreducible representations of the
corresponding groups), This knowledge can be gaincd by group-theoretical considerations, 11+12
This classification for the dN and £N configurations is given in Tables 15-2 to 15-7.

THE HALF-SHELL RULE

There is a very important rule which allows the determinacion of |gSL MgM, ) eigen-
functions for many states of configurations of several electrons from those with a smaller

number of electrons and vice versa. The considerable simplification that it introduces re-
duces the labor involved by approximately a half,

Let us consider two determinantal basis functions for a given configuration of equiv-
alent electrons which differ only on one of the m; values

A= [mll“.mla“'mlt"”m[N] A'=[mll...mll,...mlrl...mlN] (15-23)

Next consider the determinants of the configuration of N’ electrons (N"= 24+ 1+ N=2r)
obtained from the previous ones by replacing holes in the m_ =4 half-shell by electrons with
the negatives of their corresponding m; values, Thus, for example, if we take the above

determinants to be [32|1) and (30{1] of the £3 configuration, and represent them schematically
in the form
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(15-24)

the associated determinants for £6 obtained by the above rule are {32101}1) and [321_1-2-]1],
respectively

(15-25)
1 1

It is easily seen that the determinant of N electrons associated to A will contain

the quantum number —m; , , the onc associated to A” will contain -m; , while the rest of
a
e m; will be comman to both,

The matrix element of a tensor operator U(qk)(with q # 0) between the determinantal
basis functions A and A’is, according to liq. (14-17)

A1) = DP (Amy 10 4wy ) (15-26)
53 a

The corresponding matrix element between the '‘half-shell associate’’ determinants,
Aand A7, is

AU R = =D (4 -my [u)2, -m; ) (1527
q o q o’
It is easily proved that the paritics p and p of the pertinent permutations satis(y

P=p+ladl-1 forq#é 0 P=p forg=0 (15-28)

. . k
The symmetry relations between the matrix elements of the u! )operators are

(4, ~mul) 14, -m%) = (=D I(m? [l 1m (15-29)

From all these considerations, it follows that

A w*A) = 0t uleia (15-30)
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This relation is also valid without modification for q = O in the case of k odd,. since
S (Lmlul® |4m) = 0, for k odd (15-31)
m

All previous considerations used in the determination of the |gSL MM, ) functions,
with the exception of those concerning the spin, make use of the operators U(1), UE;” and
q
U(q”, which act in identical fashion on **half-shell associate’’ determinants.

It follows that it a linear combination of determinants belongs to given irreducible
representations of R, and Rg {or R3, G, and R), the corresponding linear combination of
the "‘half-shell associate'’ determinants also belongs to the same representations. It must
be noticed, however, that they correspond to different S and Mg eigenvalues.

Thus, for example, if the |gS1. MM, ) basic functions for f2 are known, the cor-
responding functions belonging to the representations (000) (200) and (110) for other con-
figurations £3, f4, £, {7 may be obtained by the "*half-shell rule’’ and by appropriate use

of the S_ operator, One example of the use of this rule is given below for the d? configuration
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Example: The d° Configuration

We shall illustrate the method by obtaining one basis function, M; =1 and Mg =S5,
for each of the states of the d> configuration.

The basis function for the quartet states 4F and 4P may be obtained from those for
the triplet states of d2 by use of the ‘*halfeshetl rule’,

d?2  3F = [21] 3p={ 2201 -3 1011 /S (15-32)

43 4R =[210] AP={ V3 R2011-VB 21211 /Y5 (15-33)

For the doublet states, we start with the one with the highest L, namely the 2H. There
is only one wave function with M.= 5, and this must correspond to 2H

24 = [2112] (15-34)

If the M-lowering operator is applied to this, we obtain a linear combination of two
functions [21]1] and [202], which corresponds to 211, M, = 4,

The other independent linear combination, orthogonal to the previous one must corre=

spond to a new state, namely the G. The process is facilitated by adopting a scheme of the
type
(2111 [20]2]

L_[21]2] 2 V& (15-35)
2G V& =2

The first row is actually the matrix of the L_ operator, The last row gives the co~

efficients of the function corresponding to the 2G state, If this is normalized, we can write
it in the form

2G = {3 [21]1] - V2 12021} / 5 (15+36)
We may proceed in the same form now, and apply L_ to the previous functions. Since

we are not interested in the M; = 3 functions for the 2H and 2G states, we may apply L_ to
the functions {21|1] and [20]2] rather than to the linear combinations corresponding to the
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M, =4 functions of the 211 and 2G states. This not only avoids a matrix multiplication, but
also simplifies the determination of the basis functions for the new states making their
appearance at this point, The new functions must be orthogonal to any linear combination
of the M| = 3 functions for *H and 2G, and thercfore to L_ [21]1] and L_ [20]2). The matrix

of L_ between determinantal basis functions may be obtained by inspection by means of the

diagrams (15-16).

The calculation scheme for M| =3 is

21101 ([2011) [2T1)21 (102}
L_{[21)1] V6 NG 0 0
L_ (202} 0 2 V6 (15-37)
Ap 1 -1 0 1
B3 1 -1 Ve -2

The two first rows constitute the matrix of L_. There are now four basis functions for
M; =3 and therefore two new basis functions for F states. One of these must be the Mg = Y
function of the 4F state, which may be obtained from the already known Mg = 3/2 function
[210] as S_ [210], and is given in the third row.

The remaining function corresponds to the new 2F state. Its coefficients are given in
the last row, which is orthogonal to all the others.

We shall carry the process one step further and work out the scheme for the M, = 2
functions. This is of interest, because in this case we obtain two states of the same type,

namely two 2D states, and we shall show how they can be chosen to belong to different
representations of the group Ry

The calculation scheme for the M; = 2 functions is

(21111 (20101 (21)11 C[oj11 (22121 (172}
L_[21]0] VG VG 0 0 0 0
5. (2011] 0 N Ny 2 0 0
L_ (2112} 0 2 0 2 2 (15-38)
L_[10}2] 0 0 2 0 Ve
D10 1 -1 1 0 -1 0
D21y -3 3 1 ~2v& -5 4
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After the matrix elements of I._ have been determined, the ZD“O) function may be
found in essentially two different ways which we shall sketch briefly,

The first method makes use of the fact that the ')D(lo) function of the d* config-
uration also belongs to the (10) representation of Ry, The SD(IO) function for M{ =2,
Mg =S8 =2, is simply [2101}s The function for Mg = 1 is easily obtained as

s_ (2101} = (21011 - (211]0] + (201|117 - [101]2] (1539)

The ZD(lo) function for d3 is obtained from this by means of the **half-shell rule’’.

Another method is based on the fact that the U3) operators connect only states of
the same itreducible representation of R, Since the determinantal basis function for M 23
do not form functions of the (10) representation, the operatots UER) operating on them will

always yield functions orthogonal to those of the ZD“O) state. Ve can take, for example
uB) 21121 = N 21T1 (22)2) - (1712 (15-40)

The coefficients for the ZD(IO) function may then be determined by this additional
orthogonality condition.

Finally, the function for the 2D(2” state is chtained by making it orthogonal to that
for 2D (g, and the I._ (21]0], etc,
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TABLE 15-1

STATES OF THE p" CONFIGURATIONS

N 25+1 L
1 2 P
2 3 p
1 S
3 4 s
2 PD
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TABLE 15-2
STATES OF THE d°  CONFIGURATIONS
25+1 RS R3

2 (10) D

3 (11) P F

1 (00) 3
(20) DG

4 (11) P F

2 (10} D
(21) PDFGH

5 (10} D

3 (11) P F
(21) PDFGH

1 (00) s
(20) DG
(22) S DFG 1

6 (00) s

&4 (11) P F
(20) DG

2 (10) 0
(21) PDFGH
{22) S DFG 1
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TABLE 15-3a

STATES OF THE  £2

CONF IGURATION
25+1 R7 62 R3
3 110 (10) F
(11) P H
1 000 (00) s
200 (20) DG I
TABLE 15-3b
STATES OF THE £ CONFIGURATION
2541 R7 G2 R3
4 111 (00) s
(10) F
(20) DG I
2 100 (10) F
210 (11) P H
(20) DG I
(21) DFGH KL

15-16
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4
STATES OF THE f

TABLE 15-4

CONFIGURATION
25+1 R7 G2 R3
5 111 {00) S
(10) F
(20) DG I
3 110 (10) F
(11) P H
211 (10) F
(11) P H
(20) D G I
(21) DFGH KL
(30) P FGHIK M
1 000 (00) $
200 (20) DG I
220 {20) DG I
(21) DFGH KL
(22) S D GHI L N
15-17




TABLE 15-%

STATES OF THE £ CONFIGURATION

25+1 R7 G2 R3
6 110 (10) F
{ P H
4 111 (00) ]
(10) F
(20) D G
211 {10} F
(11) P H
{20) DG
(21) DFGH KL
(30) P FGHIK M
2 100 (10) F
210 {11) P H
(20) DG 1
(21) DFGH KL
221 {10) F
{11) P H
(20) DG 1
(21) DFGH KL
{30) P FGHIK M
(31) PDFGHIKLMNO
F HIK
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TABLE 15-6

STATES OF THE £°  CONFIGURATION

25+1 R7 G2 R3
7 100 (10) F
5 111 (00) s
(10) F
(20) DG I
210 P H
DG I
DFGH KL
3 110 oF
P H
211 (10} F
(11} P H
(20) DG 1
(21) DFGH KL
(30) P FGHIK M
221 (10) F
(11) P H
{20) D G I
(21) DFGH KL
(30} P FGHIK M
(31) PDFGHIKLMNO
F HIK
1 000 (00) s
200 (20) DG I
220 (20) DG I
(21) DFGH KL
(22) S D GHI L N
222 (00) s
(10) F
(20) DG I
(30) P FGHIK M
(40) S DFGHIKLMN Q
G 1L
15-19




TABLE 15-7

STATES OF THE §/  CONFIGURATION

25+1 R7 G2 R3
8 000 (00) S
6 110 (10} F
{11) P H
200 {20) DG
4 111 {00) S
(10) F
(20) DG 1
211 {(10) F
(11) P H
(20) DG
{21) DFGH KL
{30} P FGHIK M
220 (20) DGl
(21) DFGH KL
(22) S DGHI L N
2 100 (10) F
210 {11} P H
(20) DG
(21) DFGH KL
221 (10) F
(11) P H
(20) DG
(21) DFGH KL
(30} P FGHIK M
(31) PDFGHIKLMNO
F HIK
222 {00) S
(10) F
(20) DG
{30) P FGHIK M
{(40) S DFGHIKLMN Q
G1 L
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6. THE CRYSTAL-FIELD HAMILTONIAN

We shall consider now the case of an atom or ion in an environment such as that of a
crystal lattice,

The simplest treatment involves two basic assumptions.

The first assumption is that the electrons under consideration are localized in the

central ion, so that they do not participate in the chemical bonding to the neighboring atoms
or jons.

The second assumption considers the effect of the envirnnment as creating an electro-
static potential due to a charge distribution around the central ion.

The assumption about the localization of the electrons implies that the basis functions
involved in the treatment are restricted to be atomic orbitals of the central ion, Accordingly,
the theoty applies with greater success to the electronic states of those atoms or ions having
an incomplete electronic shell which is relatively wdisturbed by the environment, such as the
transition-metal or rare-earth ions, The logical extension of the theory consists of including

among the basis functions the atomic orbitals of the neighboring ions, but we shall not con-
sider them at present.

The second assumption allows us to write the approximate Hamiltonian for the ion in
the form

H = “F + VC (1(1‘1)

where H; is the Hamiltonian of the free ion, as given previously in Eq. (15-1}, and the crystal
potential V- is of the form

N
VC = lz v (fis eia ‘l";) (16-2)

which is 8 sum of N one-electron operatots, symmetric under permutations of electrons, and
therefore an operator of the type F considered in Section 14,

The functional form of the one-electton function V(r, 6, ¢) may be established by
classical arguments from a knowledge of the charge distribution which represents the effect
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of the environment, This distribution has the symmetry of a certain point group, determined
by the lattice,

The simplest assumption about the charge distribution is to consider it as a system
of point charges located at the positions of the neighboring ions, Although this is a crude
approximation, it may be refined to include more general charge distributions, still within

the framework of the simple model under consideration,

In what follows we show how symmetry arguments may be used to the greatest advan-
tage in the determination of the function V(r, 0, ¢
POTENTIAL OF A SYMMETRIC SYSTEM OF POINT CHARGES

The potential at the point with polar coordinates (r, 0, ¢) due to a point charge q_
located at the point (R ,, 8, ® ) is

al
Vy=q, R2 4+ 2 =2t R, cos w,) A

o Ja I IR T b .
2 (1+ e 2 R, cos w, (16-3)

a a

where @ is the angle between the unit vectors in the directions (@, ®,) and (6, ¢), so
that

cos w, = cos 8, cos 0 + sin @, sin 0 cos (O, ~ &) (16-4)

For r <R, the potential may be expanded as a power seties in t/R

q ot ' L
vV, = RR - ,Eo Py (cos w,) (R_ra—) (16-5)

The coefficients P, (cos w,) are the Legendre polynomials in the variable cos w,,

and may be expressed in terms of the spherical harmonics of the variables (8,, ®,) and
(0, ¢) by means of the addition theorem

P (cosw,)= 42 3 YM (@, 0, Y} (6, ¢) (16:6)
2L+1 o 7
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A similar expression obtains for other sets of basis functions related to the YM bya
unitary transformation, If we choose an equivalent system of basis functions which are sym-

metry functions for a certain point group, the addition theorem may be expressed in the form

Py (cos w)= =22 % s (@, 00+ 5L (0, ¢) (16+7)
' 2L T g b

where the S“‘av) are the symmetry functions considercd in Section 7. The index y runs over
all the 1rrcducﬂ:1e representations T contained in the (reducible) representation afforded by

the Y:‘f for the given value of L. If the representation I is contained n, times, the index a
assumes n,, different values,

Consider next a system of n identical point charges, q, = q, {a=1, 2, .., n), dis-

tributed about the origin according to the symmetry of a given point group, so that R, = R,

Under the symmetry operations R, a typical point charge with coordinates (R, ®,, @)
will transform at least once into any other of the set. In those particular cases where the
charges are located on certain elements of symmetry such as axes, planes, etc,, there will

be a certain number, h,, of operations which leave a typical point invariant. These operations
form a subgroup, and we shall have

.

nhy=h (16-8)
where h is the number of operations of the group.

The potential due to such a system of point charges may be written as

o _ .
Ve e TRV IRV (16-9)

This may also be expressed as follows

VenPAD v, (16-10)
where
plA) %. *er R (16-11)

is the projection operator for the totally symmetric representation, A, of the group. When
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this operates on the cocfficients P (cos w,) cxpressed in the form of Eq. (16-7), only the
totally symmetric terms survive

PAD P (cos w,) = T seA ) @, o )¢ s2AD (g, 4) (16-12)
+ a

The expression for the potential due to one set of n equivalent point charges q, takes
the form

_ng 3 {r\L 4= (LaAy) (LaA,) .
ViR 0 )= 3 1.50 (R) 2L+ 1 %S V0, @S 10, ¢) 1613

In the case of a crystal lattice, it is often necessary to consider more than one set of
identical charges, and we shall need to assign an index s, which labels the different sets,
to the pertinent variables in Eq, (16-13), The total potential is obtained by adding over all

the sets s of identical point charges, The final expression obtained may be written in the
form

Vi, 0,¢) =3 - 3 QL@ 3lo) g 4y (16-14)
L=0 a

In this expression the 8L functions are defined as

lla) 4 g(LaAy)

2L+ 1 (16-15)

and therefore are related to the c(é) operators in the same way that the 54841 are related

to the spherical harmonics. The index Ay has been suppressed with the understanding that
the 8°®) are the totally symmetric functions,

The coefficents G(~%

are lattice sums extending over all scts of equivalent point
charges

L (L n, q (1.
G2 070 - 2 oy T O 0Ly 16:16)

where the variables 8, &, are the polar coordinates of an arbitrary point charge a of

the equivalent set s.

In the case of a continuous charge distribution the summation in Fq. (16-17) is replaced
by the cotresponding integral. It may be remarked that this does not change the form of the
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expansion for thc potential given by Eq, (16-14), but only the values of the coefficients
a(‘.a)‘

. . L . . .
As an example, the contributions (1(8 ) to the coefficients in the expansion of the

potential in cubic symmetry are given in Table 161 for the most common sets of equivalent
point charges usually considered and L < 6, The totally symmetric functions are

S(O) - Yg
4 ) 0 4 o4
SV \/14 Y, + S (Y +Y,) (16-17)
\/’2-4— [ 4 4 4 ]

$@- L [ﬁyg VT (Yg+ Y;“)]
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TABLE 16-1

POTENTIALS FOR EQUIVALENT SETS OF POINT CHARGES* CUBRIC GROUP O

n 6 12 8
(xy v, %) (0, 0, a) {a, 0, ) (a, a, a)
R a VZa V3a
o 0 0 n/4
sin @ 0 V172 V273
cos 8 1 V172 V173
4 '0
/5 , B | -
[En v yes N0 _ Y70
5~ (Ya+ Y 0 32 18
5 ]
\/‘—g—tvgu/—%(vgwd‘)l 1 - =4 ——25-
ViF vg 1 -~ %
4 272 1T _ 21T
v §+Yeh) 0 128 9
fé—g—lvg-@ (Y 4+ Y34 1 - A2 196-
0 0§ GRS
. 17 8
oo s -y |-
A6 Yo e _ 39 e 28 e
s 2 a’ 64 a? 729 a7

1646
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THE MATRIX ELEMENTS OF V

The enetgy corresponding to the crystal field term V. is found to be very often of a
magnitude comparable to the enetgy separation between states of the free ion. This implies
that the crystal field term may not be treated as a small perturbation of the free jon Hamil-
tonian, It is usually necessary to determine all the matrix elements of V- between the basis

functions considered in a particular problem, and solve the secular determinant corresponding
to the lamiltonian matrix.

This offers no great difficulties for the simplest electronic configurations, but as the
number of electrons increases the number of basis functions increases very rapidly. As an

example, the numbets of basis functions for the dVN configurations are indicated in Table 16-2.

TABLE 16-2

dN CONFIGURATIONS « NUMBER OF BASIS FUNCTIONS

Without spin With spin
N Lestates LM, -functions| J-states JM-functions
1 1 5 2 10
2 5 25 9 45
3 50 19 120
4 16 100 34 210
5 16 100 37 252

Configurations with several electrons are of no less importance than the simplest
ones. Thus, for example, the states of the Fe*** jon belong to the d* configuration and
those of Fe'* to d¢ (d4 hole configuration). However, in general not all the electronic

states are of interest, and some of them have not even been observed experimentally in the
free ions,

In view of the considerable amount of work involved in the several-electron case, it
is important to consider carefully the computational scheme to be used. In order to simplify the

treatment it is convenient to take advantage of symmetry considerations to the largest
possible extent,

The main steps to be followed may be briefly described as follows:
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a) Selection of a set of one-electron basis functions which is complete to
the approximation desired.

b) Formation of all possible products of N one-electron functions,
¢) Antisymetrization with respect to permutations of electron indices.

d) Construction of linear combinations of product functions which belong
to the different irreducible representations of the symmetry group of
the Hamiltonian,

e) Computation of the matrix elements of the Hamiltonian operator between
symmetry functions.

f) Calculation of eigenvalues by solviag the sccular determinant corresponding
to the Hamiltonian matrix, and determination of the eigenfunctions.

g) Calculation of the matrix elements of other operators of interest, transition
probabilities, etc.

This only represents an outline of the different processes involved, but it is not
meant to imply that the order in which they are listed is the most convenient in practice,
The most difficult step is the determination of the matrix elements of all the operators in=-

volved in the expression for the Hamiltonian and it is therefore of prime importance to per-
form this in the simplest scheme possible.

If one considers the Hamiltonian of an ion in a crystal lattice, the terms in Hy, corre-
sponding to the free ion energy, are spherically symmetric, while the crystal field term V -
has the lower symmetry of one of the point groups. It is evident that the matrix elements of
H g are most conveniently determined in a set of spherical basis functions, Although the
term V¢ is not spherically symmetric, it may be expressed as a sum of terms each with
different but definite transformation properties under rotations. This is simply accomplished
when the functions 3'"® are expressed in terms of spherical harmonics. The matrix elements
of the different terms in this sum may be obtained without greac difficulties in spherical basis.

In fact, if the reduced matrix elements are known, the application of the Wigner-Eckart theotem
in spherical basis is straightforward,

If this scheme is followed, the transformation of the Hamiltonian to the basis appro-
priate to the point group of V.~ may be accomplished by a similarity transformation, The
transformation between spherical basis functions and the symmetry functions of a given
point group is rather simple, as it is diagonal in all the quantum numbers except M, and the
matrix elements depend only on J, M, and the particular point group in question. Moreover,

this transformation may be determined once and for all, and the results have been given in
Secrion 7,
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According to this procedure; the problem is actually broken-up into two parts, one of
which is independent of the lattice symmetry, the other independent of electronic config-
utation, number of electrons, etc,, but enly on the values of ] for the different states.

By exactly the same type of reasoning one easily finds the advantages of classifying
the basis functions for configurations of equivalent electrons according to those groups of
symmetry such as R, or R and G,, previously introduced, Although the Hamiltonian is not
totally symmetric under those groups, it may be expressed as a sum of terms which belong

to irreducible representations of these groups. Thus, for example the set of fourteen operators

U ez v 2<q<2
1
(16-18)
U?%~£Y?Nn -4 <qg2
1

all together form a basis for the irreducible representation (20) of the group Ry, Thetefore,
in a sct of basis functions classified according to the irreducible representations of R,
there are many matrix elements for these operators which vanish on account of symmetry.

Thus, for example, for the d° configuration, the matrices of the corresponding crystal field
operators EYgZ) (i) and E_JY(q‘” (i) have the form
1 1

22y (@1 a0

(22)

(21) (16-19)

(10)

where the unshaded areas correspond to the matrix elements which vanish for symmetry
reasons,

In view of these considerations, we have determined the angular factor of the reduced
matrix elements of the operators which appear in the expression of the crystal potential for
configurations of pN, d¥, and fN electrons in the gSL scheme, and these are listed in the
Tables. These do not include the results for the ?L states of 3 and {7, nor the 3L and 'L
states of {5, From these, the angular factors of the reduced matrix elements for states of
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the mixed configurations may be obtained by s‘mple coupling formulae given in Section 12,

The reduced matrix elements are given for the operators C(QK) which differ from the

cotresponding operators for the spherical harmonics by inclusion of the factor (47/2K + 1_)%

1, N
c'Q - (2_%{—1) "3V @, e (16-20)

These are related to the U(g) operators of Eq. (15-7) by the relation

cF= A Huy (16-21)

where

A e® ) =nt et 1)@ *:) ﬁ) (1622)

For K odd, the C(g) operators have vanishing matrix elements between states of the
configurations of equivalent electrons, since the reduced matrix elements of the corresponding
one-electron operators ‘%) vanish according to Eq. (16-22), However, the reduced matrix
elements of the U(g) operators do not vanish and these are given in the Tables, The sign
of the reduced matrix elements of these operators detetmines the choice of phases fot the

siates,

The states are classified according to gSL, as this is the best choice for the general
case, If the spin-orbit coupling is to be treated rigorously it is convenient to operate in the
|aJ M) basis. In this case the reduced matrix elements may be easily obtained from those
listed by means of the coupling formulae of Section 12, in particular Eq. (12-16). The 6-j
symbols which appear in these formulae have not been tabulated on account of their large
number, In our scheme of calculations the nceded G+j symbols are computed by use of a pro-
gram for the 1BM electronic computer.
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APPENDIX A

LEGENDRE POLYNOMIALS (UNNORMALIZED)

Definition:

qt

1 1
P&(X) = m d_x’z_ (Xz—l)

General expression:

P - 1.3.5...024-1) [{_&(&—-1) £-2
4 41 . 2(24-1) X

. AA-1H(4-2) (£-3) -4
2.4. 24-1) (28 -3)

Ad-1) (4-2) (4-3) (1-4)(£-5) £ -6

246 Q1-1) 1= 3)(20- 59 e
TABLE A-1
LEGENDRE POLYNOMIALS
po(x) =1
Pl(x)= X

Py(x) = 3-(3x% - 1)

P,(x) - -%— (5x3 - 3%)

Pyx) = L (35xt-30x2 4 3)

Ps(x) = — (63x%~70x3 + 15)

Pg(x) = - (231x6 - 315x% 1 10522 - 5)

P,(x) = % (429x7 = 693x3 + 315x3 - 35x)

Py(x) = 1—;5-(6435::8 - 12012x6 + 6930x4 - 1260x2 + 35)

A-l

(A-1)

(A-2)




Another convenient form in terms of the cosines of the angles n8, is

P p(cosd) = 123456 Q% :f, {2 cosdga

LA . 1.3. 4 (4 1) ) )
2 1(2»[’,-1)c°s (£-2)6+2 12001 @13 cos ({-4)8  (A-3)

42 1.3.5 L(A-D(L-2)
1.2.3 Q2t-1)24~3)21-5)

cos (£~6) 0 + .ouu )

TABLE A-2
LEGENDRE POLYNOMIALS

Py (cos ) =1

P (cos 0) = cos 0

P, (cos 6) = ~}1- (3 cos 20 1 1)

Py (cos 0) = L (5 cos 30+ 3 cos 6)

P, (cos 6) = =L (35 cos 401 20 cos 20+ 9)

Py (cos 0) = =L (63 cos 30 1 35 cos 304 30 cos 6)

Pg (cos 6) = ghr (231 cos 60 + 126 cos 40+ 105 cos 20 + 50)

P, (cos 6) = rghr (429 cos 70 + 231 cos 56 + 189 cos 36 + 175 cos 6)

Py (cos 6) = E%ﬁr (6435 cos 80 + 3432 cos 60 + 2772 cos 40 + 2520 cos 26 + 1225)

NORMALIZED ASSOCIATED LEGENDRE POLYNOMIALS

Definition:

op - LI **1 EZT;)Ln (1-x2) 2(4-)*““(:2 Dt (A

£ and m are integers and 0 <m 5 4. The expression also has a meaning for negative m,
but 89 (x) and gim(x) ate not independent.




6" (x) = (-1)" @F(x) (A-S5)
The 6')% are single-valued, continuous, and quadratically integrable in the interval ~1<x <1,

Orthogonality:
[}, ©F () OF. (x)dx = 5, . (A6)
Other properties:
The @){ (x) are real functions,

3 (=0 = (¥ " 83 )

(A-7)
= (-t e
General expression: (for x = cos 0)
= (-sm o)m.__(.Zi_)_l_ .2.&.‘1‘..1 _.(Lm)_r (Coq 0)'{"—’“
2% 21 (A= m)! 2 (d+m
('fl"‘ nl) ('ﬁ—m 1) (CO? o)ff,- m -2 (A'B)
24-1)
y Uem-m-D-m-2)(dem-3) o obm-d g

2.4.24-1)(24-3)

SPHERICAL HARMONICS

Definitian:

Y,& (0s¢

\/__ 1 (cos 0) (A-9)

4and m are integers, and = 4 <m < 4. There are 244 1 independent functions for a given
value of 4,

Y7 (0,6)* = (1) Y (0,8) (A-10)
Orthonormality:
7 4o [T Y] @y Y2 (6,:6) sin 040+ 84p B, (A-11)
A3




Addition Theorem:

4
Py (cos 0) = ‘Z—E%Tmz__,g[:(’?(el’(ﬁl)‘ Y™ (0,,6,) (A-12)

where 0 is the angle between the unit vectors in the directions (6,,¢,) and (8,,¢,). P¢(cos )
is the unnormalized Legendre polynomial of degree 4. For x = cos 8,

2 ey [ AT yo ]
P(x) = T @{(x)— VS YP (6,0 (A-13)

TABLE A-3
SPHERICAL HARMONICS

Y- DT O

-

| R W O T in 6. ei®
Yl 2 i 2 sinf.e

o [ A3
Yl— yps cns @

- 2.3 .sin20.¢el2¢

1
4-
l - ~L _L . . 1 - & . iqs
YZ b f4 2 3 sinf-.-cos0.¢
.L. /1 29,

2 dn (3 cos“~ @ 1)

!

1
4
v2. L /7. .2.3.5sin20. . ei2d
3 4 yp 2:3.5s8in“0.cosf.¢

1 T3 s 2 o

Y3 -:-.--'-4L Z;-‘S‘sm(i(ﬁ Cos 0"1) e¢
o, L /. 39-3 cos

Y3 = 3 i (S cos? 0 ~3 cos 0)




TABLE A-3
SPHERICAL HARMONICS

(Continued)

Y- b 225 T sint 0. citd

e ——

"—é_ ',{?"—’3-7 sin? 0. cos 0. i3

i

1

Y2 L 2 0 s sin20. (v cos? 0-1). ei2d
B 4n

Yo 3 /9 5. 6in0.(7cos?0~3 cos 0). el
4 4 Vin

Yg - L [-2— (35 cos? 030 cos? 04 3)
8 4n

Y. 3 .&_. Lsind 0. eiSh
5 T ym 7 -sin’ 0-.e

Y4 _ 11 (i 4 i4
5 .136— "X;“~2.5.7bm 0.cos 0.cl4®

y3._ L /1t e 0o 1Y, o3P
5 16 y 5.7sin” 0(9cos® 0-1).e

2. L /"ll‘*~2-3-5-7sin20-(3 cosh‘)—cos())-e”"’S
5 8 4

Yi--.L -l 2.3 5 sin 0(21cos40-14c0820+1)-e“/’
5 16 4n

yo. L /11 (63 cos 0~ 70 cos? 0 + 15 cos 6)

5 8 4n

yé_. 1. /13 1 4. 26 0. aibp

6 32 4"37llsm0e

Ys. .3 /13 5, £ 5, LT
6 16 y 711 sin” 0 .cos 0:e

Yoo 3 J13 5 74int 0 (11 cos? 0=1) - eldd
6 32 V 4n

Yi- -l /13 3 5. 74in30(11 cos3 0—3 cos 0). eid®
6 16 4n

Y§= ’312_ 7}3—-3-5-7sin20(33cos49-18C0529+1)‘ei2¢'




TABLY A-3
SPHERICAI.  HARMONICS
{ Continued)

vio ol f13.5 .3, 74in6(33 cosS 0-30cos? 645 cos ) - e
6 16 V 4q

Yo - _11_( D—‘-i (3 711 .cos®0-5.7. cos?0+3.5.7cos?0-~9)
0 n

To obtain expression in cartesian coordinates, use the relations:

cos 0 = =, sin™0. etimgp (X &iy)" (A-14)
r r
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